Despite persistent efforts to understand the dynamics of creativity of scientists over careers in terms of productivity, impact, and prize, little is known about the dynamics of scientists' disruptive efforts that affect individual academic careers and drive scientific advance. Drawing on millions of data over six decades and across nineteen disciplines, associating the publication records of individual scientists with the disruption index, we systematically quantify the temporal pattern of disruptive ideas over individual scientific careers, providing a detailed understanding of the macro phenomenon of scientific stagnation from the individual perspective. We start by checking the relationship between disruption-based and citation-based publication profiles. Next, we observe the finite inequality in the disruptive productivity of scientists, diminishing gradually as the level of disruption increases. We then identify the initial burst phenomenon in disruption dynamics. It is further revealed that while early engagement in high disruption frictions away initial productivity, compared to initial advantage in productivity or impact, initial high disruption ensures more subsequent academic viability evidenced by a longer career span and relatively final higher productivity, but does not necessarily guarantee academic success throughout careers. Further analysis shows that increasing disruptive work is uncorrelated to overall productivity but negatively correlated with the overall impact. However, increasing disruptive work in the early career is associated with higher overall productivity, yet lower overall productivity in the later career. Our research underscores the urgent need for a policy shift that encourages a balance between the pursuit of disruptive efforts and the achievement of impactful outcomes.
Previous active inference accounts of emotion translate fluctuations in free energy to a sense of emotion, mainly focusing on valence. However, in affective science, emotions are often represented as multi-dimensional. In this paper, we propose to adopt a Circumplex Model of emotion by mapping emotions into a two-dimensional spectrum of valence and arousal. We show how one can derive a valence and arousal signal from an agent's expected free energy, relating arousal to the entropy of posterior beliefs and valence to utility less expected utility. Under this formulation, we simulate artificial agents engaged in a search task. We show that the manipulation of priors and object presence results in commonsense variability in emotional states.
This work studies the statistical advantages of using features comprised of general linear combinations of covariates to partition the data in randomized decision tree and forest regression algorithms. Using random tessellation theory in stochastic geometry, we provide a theoretical analysis of a class of efficiently generated random tree and forest estimators that allow for oblique splits along such features. We call these estimators oblique Mondrian trees and forests, as the trees are generated by first selecting a set of features from linear combinations of the covariates and then running a Mondrian process that hierarchically partitions the data along these features. Generalization error bounds and convergence rates are obtained for the flexible dimension reduction model class of ridge functions (also known as multi-index models), where the output is assumed to depend on a low dimensional relevant feature subspace of the input domain. The results highlight how the risk of these estimators depends on the choice of features and quantify how robust the risk is with respect to error in the estimation of relevant features. The asymptotic analysis also provides conditions on the selected features along which the data is split for these estimators to obtain minimax optimal rates of convergence with respect to the dimension of the relevant feature subspace. Additionally, a lower bound on the risk of axis-aligned Mondrian trees (where features are restricted to the set of covariates) is obtained proving that these estimators are suboptimal for these linear dimension reduction models in general, no matter how the distribution over the covariates used to divide the data at each tree node is weighted.
Accurate precipitation forecasts have a high socio-economic value due to their role in decision-making in various fields such as transport networks and farming. We propose a global statistical postprocessing method for grid-based precipitation ensemble forecasts. This U-Net-based distributional regression method predicts marginal distributions in the form of parametric distributions inferred by scoring rule minimization. Distributional regression U-Nets are compared to state-of-the-art postprocessing methods for daily 21-h forecasts of 3-h accumulated precipitation over the South of France. Training data comes from the M\'et\'eo-France weather model AROME-EPS and spans 3 years. A practical challenge appears when consistent data or reforecasts are not available. Distributional regression U-Nets compete favorably with the raw ensemble. In terms of continuous ranked probability score, they reach a performance comparable to quantile regression forests (QRF). However, they are unable to provide calibrated forecasts in areas associated with high climatological precipitation. In terms of predictive power for heavy precipitation events, they outperform both QRF and semi-parametric QRF with tail extensions.
Contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains, such as detecting low-quality datasets, enhancing model robustness, and designing incentive mechanisms. Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios. However, their effectiveness often diminishes due to the heterogeneity of data distributions, presenting a significant challenge to their applicability. In response, this paper explores contribution evaluation in FL from an entirely new perspective of representation. In this work, we propose a new method for the contribution evaluation of heterogeneous participants in federated learning (FLCE), which introduces a novel indicator \emph{class contribution momentum} to conduct refined contribution evaluation. Our core idea is the construction and application of the class contribution momentum indicator from individual, relative, and holistic perspectives, thereby achieving an effective and efficient contribution evaluation of heterogeneous participants without relying on an auxiliary test dataset. Extensive experimental results demonstrate the superiority of our method in terms of fidelity, effectiveness, efficiency, and heterogeneity across various scenarios.
Interpolation-based techniques become popular in recent years, as they can improve the scalability of existing verification techniques due to their inherent modularity and local reasoning capabilities. Synthesizing Craig interpolants is the cornerstone of these techniques. In this paper, we investigate nonlinear Craig interpolant synthesis for two polynomial formulas of the general form, essentially corresponding to the underlying mathematical problem to separate two disjoint semialgebraic sets. By combining the homogenization approach with existing techniques, we prove the existence of a novel class of non-polynomial interpolants called semialgebraic interpolants. These semialgebraic interpolants subsume polynomial interpolants as a special case. To the best of our knowledge, this is the first existence result of this kind. Furthermore, we provide complete sum-of-squares characterizations for both polynomial and semialgebraic interpolants, which can be efficiently solved as semidefinite programs. Examples are provided to demonstrate the effectiveness and efficiency of our approach.
Speech contains information that is clinically relevant to some diseases, which has the potential to be used for health assessment. Recent work shows an interest in applying deep learning algorithms, especially pretrained large speech models to the applications of Automatic Speech Assessment. One question that has not been explored is how these models output the results based on their inputs. In this work, we train and compare two configurations of Audio Spectrogram Transformer in the context of Voice Disorder Detection and apply the attention rollout method to produce model relevance maps, the computed relevance of the spectrogram regions when the model makes predictions. We use these maps to analyse how models make predictions in different conditions and to show that the spread of attention is reduced as a model is finetuned, and the model attention is concentrated on specific phoneme regions.
Estimating the causal effect of a treatment on the entire response distribution is an important yet challenging task. For instance, one might be interested in how a pension plan affects not only the average savings among all individuals but also how it affects the entire savings distribution. While sufficiently large randomized studies can be used to estimate such distributional causal effects, they are often either not feasible in practice or involve non-compliance. A well-established class of methods for estimating average causal effects from either observational studies with unmeasured confounding or randomized studies with non-compliance are instrumental variable (IV) methods. In this work, we develop an IV-based approach for identifying and estimating distributional causal effects. We introduce a distributional IV model with corresponding assumptions, which leads to a novel identification result for the interventional cumulative distribution function (CDF) under a binary treatment. We then use this identification to construct a nonparametric estimator, called DIVE, for estimating the interventional CDFs under both treatments. We empirically assess the performance of DIVE in a simulation experiment and illustrate the usefulness of distributional causal effects on two real-data applications.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.