亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a transformative general-purpose technology, AI has empowered various industries and will continue to shape our lives through ubiquitous applications. Despite the enormous benefits from wide-spread AI deployment, it is crucial to address associated downside risks and therefore ensure AI advances are safe, fair, responsible, and aligned with human values. To do so, we need to establish effective AI governance. In this work, we show that the strategic interaction between the regulatory agencies and AI firms has an intrinsic structure reminiscent of a Stackelberg game, which motivates us to propose a game-theoretic modeling framework for AI governance. In particular, we formulate such interaction as a Stackelberg game composed of a leader and a follower, which captures the underlying game structure compared to its simultaneous play counterparts. Furthermore, the choice of the leader naturally gives rise to two settings. And we demonstrate that our proposed model can serves as a unified AI governance framework from two aspects: firstly we can map one setting to the AI governance of civil domains and the other to the safety-critical and military domains, secondly, the two settings of governance could be chosen contingent on the capability of the intelligent systems. To the best of our knowledge, this work is the first to use game theory for analyzing and structuring AI governance. We also discuss promising directions and hope this can help stimulate research interest in this interdisciplinary area. On a high, we hope this work would contribute to develop a new paradigm for technology policy: the quantitative and AI-driven methods for the technology policy field, which holds significant promise for overcoming many shortcomings of existing qualitative approaches.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Extensibility · 評論員 · 分解的 · 回合 ·
2023 年 7 月 12 日

Achieving fairness in sequential-decision making systems within Human-in-the-Loop (HITL) environments is a critical concern, especially when multiple humans with different behavior and expectations are affected by the same adaptation decisions in the system. This human variability factor adds more complexity since policies deemed fair at one point in time may become discriminatory over time due to variations in human preferences resulting from inter- and intra-human variability. This paper addresses the fairness problem from an equity lens, considering human behavior variability, and the changes in human preferences over time. We propose FAIRO, a novel algorithm for fairness-aware sequential-decision making in HITL adaptation, which incorporates these notions into the decision-making process. In particular, FAIRO decomposes this complex fairness task into adaptive sub-tasks based on individual human preferences through leveraging the Options reinforcement learning framework. We design FAIRO to generalize to three types of HITL application setups that have the shared adaptation decision problem. Furthermore, we recognize that fairness-aware policies can sometimes conflict with the application's utility. To address this challenge, we provide a fairness-utility tradeoff in FAIRO, allowing system designers to balance the objectives of fairness and utility based on specific application requirements. Extensive evaluations of FAIRO on the three HITL applications demonstrate its generalizability and effectiveness in promoting fairness while accounting for human variability. On average, FAIRO can improve fairness compared with other methods across all three applications by 35.36%.

Advanced AI models hold the promise of tremendous benefits for humanity, but society needs to proactively manage the accompanying risks. In this paper, we focus on what we term "frontier AI" models: highly capable foundation models that could possess dangerous capabilities sufficient to pose severe risks to public safety. Frontier AI models pose a distinct regulatory challenge: dangerous capabilities can arise unexpectedly; it is difficult to robustly prevent a deployed model from being misused; and, it is difficult to stop a model's capabilities from proliferating broadly. To address these challenges, at least three building blocks for the regulation of frontier models are needed: (1) standard-setting processes to identify appropriate requirements for frontier AI developers, (2) registration and reporting requirements to provide regulators with visibility into frontier AI development processes, and (3) mechanisms to ensure compliance with safety standards for the development and deployment of frontier AI models. Industry self-regulation is an important first step. However, wider societal discussions and government intervention will be needed to create standards and to ensure compliance with them. We consider several options to this end, including granting enforcement powers to supervisory authorities and licensure regimes for frontier AI models. Finally, we propose an initial set of safety standards. These include conducting pre-deployment risk assessments; external scrutiny of model behavior; using risk assessments to inform deployment decisions; and monitoring and responding to new information about model capabilities and uses post-deployment. We hope this discussion contributes to the broader conversation on how to balance public safety risks and innovation benefits from advances at the frontier of AI development.

The heterogeneous, geographically distributed infrastructure of fog computing poses challenges in data replication, data distribution, and data mobility for fog applications. Fog computing is still missing the necessary abstractions to manage application data, and fog application developers need to re-implement data management for every new piece of software. Proposed solutions are limited to certain application domains, such as the IoT, are not flexible in regard to network topology, or do not provide the means for applications to control the movement of their data. In this paper, we present FReD, a data replication middleware for the fog. FReD serves as a building block for configurable fog data distribution and enables low-latency, high-bandwidth, and privacy-sensitive applications. FReD is a common data access interface across heterogeneous infrastructure and network topologies, provides transparent and controllable data distribution, and can be integrated with applications from different domains. To evaluate our approach, we present a prototype implementation of FReD and show the benefits of developing with FReD using three case studies of fog computing applications.

Planning is a pivotal ability of any intelligent system being developed for real-world applications. AI planning is concerned with researching and developing planning systems that automatically compute plans that satisfy some user objective. Identifying and understanding the relevant and realistic aspects that characterise real-world application domains are crucial to the development of AI planning systems. This provides guidance to knowledge engineers and software engineers in the process of designing, identifying, and categorising resources required for the development process. To the best of our knowledge, such support does not exist. We address this research gap by developing a conceptual framework that identifies and categorises the aspects of real-world planning domains in varying levels of granularity. Our framework provides not only a common terminology but also a comprehensive overview of a broad range of planning aspects exemplified using the domain of sustainable buildings as a prominent application domain of AI planning. The framework has the potential to impact the design, development, and applicability of AI planning systems in real-world application domains.

International institutions may have an important role to play in ensuring advanced AI systems benefit humanity. International collaborations can unlock AI's ability to further sustainable development, and coordination of regulatory efforts can reduce obstacles to innovation and the spread of benefits. Conversely, the potential dangerous capabilities of powerful and general-purpose AI systems create global externalities in their development and deployment, and international efforts to further responsible AI practices could help manage the risks they pose. This paper identifies a set of governance functions that could be performed at an international level to address these challenges, ranging from supporting access to frontier AI systems to setting international safety standards. It groups these functions into four institutional models that exhibit internal synergies and have precedents in existing organizations: 1) a Commission on Frontier AI that facilitates expert consensus on opportunities and risks from advanced AI, 2) an Advanced AI Governance Organization that sets international standards to manage global threats from advanced models, supports their implementation, and possibly monitors compliance with a future governance regime, 3) a Frontier AI Collaborative that promotes access to cutting-edge AI, and 4) an AI Safety Project that brings together leading researchers and engineers to further AI safety research. We explore the utility of these models and identify open questions about their viability.

Multiscale partial differential equations (PDEs) arise in various applications, and several schemes have been developed to solve them efficiently. Homogenization theory is a powerful methodology that eliminates the small-scale dependence, resulting in simplified equations that are computationally tractable. In the field of continuum mechanics, homogenization is crucial for deriving constitutive laws that incorporate microscale physics in order to formulate balance laws for the macroscopic quantities of interest. However, obtaining homogenized constitutive laws is often challenging as they do not in general have an analytic form and can exhibit phenomena not present on the microscale. In response, data-driven learning of the constitutive law has been proposed as appropriate for this task. However, a major challenge in data-driven learning approaches for this problem has remained unexplored: the impact of discontinuities and corner interfaces in the underlying material. These discontinuities in the coefficients affect the smoothness of the solutions of the underlying equations. Given the prevalence of discontinuous materials in continuum mechanics applications, it is important to address the challenge of learning in this context; in particular to develop underpinning theory to establish the reliability of data-driven methods in this scientific domain. The paper addresses this unexplored challenge by investigating the learnability of homogenized constitutive laws for elliptic operators in the presence of such complexities. Approximation theory is presented, and numerical experiments are performed which validate the theory for the solution operator defined by the cell-problem arising in homogenization for elliptic PDEs.

To realize the potential benefits and mitigate potential risks of AI, it is necessary to develop a framework of governance that conforms to ethics and fundamental human values. Although several organizations have issued guidelines and ethical frameworks for trustworthy AI, without a mediating governance structure, these ethical principles will not translate into practice. In this paper, we propose a multilevel governance approach that involves three groups of interdependent stakeholders: governments, corporations, and citizens. We examine their interrelationships through dimensions of trust, such as competence, integrity, and benevolence. The levels of governance combined with the dimensions of trust in AI provide practical insights that can be used to further enhance user experiences and inform public policy related to AI.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Australia is a leading AI nation with strong allies and partnerships. Australia has prioritised robotics, AI, and autonomous systems to develop sovereign capability for the military. Australia commits to Article 36 reviews of all new means and methods of warfare to ensure weapons and weapons systems are operated within acceptable systems of control. Additionally, Australia has undergone significant reviews of the risks of AI to human rights and within intelligence organisations and has committed to producing ethics guidelines and frameworks in Security and Defence. Australia is committed to OECD's values-based principles for the responsible stewardship of trustworthy AI as well as adopting a set of National AI ethics principles. While Australia has not adopted an AI governance framework specifically for Defence; Defence Science has published 'A Method for Ethical AI in Defence' (MEAID) technical report which includes a framework and pragmatic tools for managing ethical and legal risks for military applications of AI.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

北京阿比特科技有限公司