Disaster victim identification (DVI) entails a protracted process of evidence collection and data matching to reconcile physical remains with victim identity. Technology is critical to DVI by enabling the linkage of physical evidence to information. However, labelling physical remains and collecting data at the scene are dominated by low-technology paper-based practices. We ask, how can technology help us tag and track the victims of disaster? Our response has two parts. First, we conducted a human-computer interaction led investigation into the systematic factors impacting DVI tagging and tracking processes. Through interviews with Australian DVI practitioners, we explored how technologies to improve linkage might fit with prevailing work practices and preferences; practical and social considerations; and existing systems and processes. Using insights from these interviews and relevant literature, we identified four critical themes: protocols and training; stress and stressors; the plurality of information capture and management systems; and practicalities and constraints. Second, we applied the themes identified in the first part of the investigation to critically review technologies that could support DVI practitioners by enhancing DVI processes that link physical evidence to information. This resulted in an overview of candidate technologies matched with consideration of their key attributes. This study recognises the importance of considering human factors that can affect technology adoption into existing practices. We provide a searchable table (Supplementary Information) that relates technologies to the key attributes relevant to DVI practice, for the reader to apply to their own context. While this research directly contributes to DVI, it also has applications to other domains in which a physical/digital linkage is required, particularly within high-stress environments.
Presently, the practice of distributed computing is such that problems exist in a mathematical realm different from their solutions: a problem is presented as a set of requirements on possible process or system behaviors, and the solution is presented as algorithmic pseudocode satisfying the requirements. Here, we present a novel mathematical realm, termed \emph{multiagent transition systems}, that aims to accommodate both distributed computing problems and their solutions. A problem is presented as a specification -- a multiagent transition system -- and a solution as an implementation of the specification by another, lower-level multiagent transition systems. This duality of roles of a multiagent transition system can be exploited all the way from a high-level distributed computing problem description down to an agreed-upon base layer, say TCP/IP, resulting in a mathematical protocol stack where each protocol is implemented by the one below it. Correct implementations are compositional and thus provide also an implementation of the protocol stack as a whole. The framework also offers a formal, yet natural, notion of faults and their resilience. We present two illustrations of the power of the approach: A multiagent transition systems specifying a centralized single-chain protocol and a distributed longest-chain protocol, show an implementation of this protocol by the longest-chain protocol, and conclude -- via the compositionality of correct implementations -- that the distributed longest-chain protocol is universal for centralized multiagent transition systems. Second, we describe a DAG-based blockchain consensus protocol stack that addresses each of the key tasks of a blockchain protocol -- dissemination, equivocation-exclusion, and ordering -- by a different layer of the stack. Additional applications of this mathematical framework are underway.
A good amount of research has explored the use of wearables for educational or learning purposes. We have now reached a point when much literature can be found on that topic, but few attempts have been made to make sense of that literature from a holistic perspective. This paper presents a systematic review of the literature on wearables for learning. Literature was sourced from conferences and journals pertaining to technology and education, and through an ad hoc search. Our review focuses on identifying the ways that wearables have been used to support learning and provides perspectives on that issue from a historical dimension, and with regards to the types of wearables used, the populations targeted, and the settings addressed. Seven different ways of how wearables have been used to support learning were identified. We propose a framework identifying five main components that have been addressed in existing research on how wearables can support learning and present our interpretations of unaddressed research directions based on our review results.
The prevalence and perniciousness of fake news has been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from two main weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they neglect much redundant information contained in evidences that may be useless or even harmful. To solve these problems, we propose a unified Graph-based sEmantic sTructure mining framework, namely GET in short. Specifically, different from the existing work that treats claims and evidences as sequences, we model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Finally, the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Comprehensive experiments have demonstrated the superiority of GET over the state-of-the-arts.
Recent years have witnessed remarkable progress towards computational fake news detection. To mitigate its negative impact, we argue that it is critical to understand what user attributes potentially cause users to share fake news. The key to this causal-inference problem is to identify confounders -- variables that cause spurious associations between treatments (e.g., user attributes) and outcome (e.g., user susceptibility). In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities. Learning such user behavior is typically subject to selection bias in users who are susceptible to share news on social media. Drawing on causal inference theories, we first propose a principled approach to alleviating selection bias in fake news dissemination. We then consider the learned unbiased fake news sharing behavior as the surrogate confounder that can fully capture the causal links between user attributes and user susceptibility. We theoretically and empirically characterize the effectiveness of the proposed approach and find that it could be useful in protecting society from the perils of fake news.
Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.
In recent years, disinformation including fake news, has became a global phenomenon due to its explosive growth, particularly on social media. The wide spread of disinformation and fake news can cause detrimental societal effects. Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation. The goal of this chapter is to pave the way for appreciating the challenges and advancements via: (1) introducing the types of information disorder on social media and examine their differences and connections; (2) describing important and emerging tasks to combat disinformation for characterization, detection and attribution; and (3) discussing a weak supervision approach to detect disinformation with limited labeled data. We then provide an overview of the chapters in this book that represent the recent advancements in three related parts: (1) user engagements in the dissemination of information disorder; (2) techniques on detecting and mitigating disinformation; and (3) trending issues such as ethics, blockchain, clickbaits, etc. We hope this book to be a convenient entry point for researchers, practitioners, and students to understand the problems and challenges, learn state-of-the-art solutions for their specific needs, and quickly identify new research problems in their domains.
Objects are made of parts, each with distinct geometry, physics, functionality, and affordances. Developing such a distributed, physical, interpretable representation of objects will facilitate intelligent agents to better explore and interact with the world. In this paper, we study physical primitive decomposition---understanding an object through its components, each with physical and geometric attributes. As annotated data for object parts and physics are rare, we propose a novel formulation that learns physical primitives by explaining both an object's appearance and its behaviors in physical events. Our model performs well on block towers and tools in both synthetic and real scenarios; we also demonstrate that visual and physical observations often provide complementary signals. We further present ablation and behavioral studies to better understand our model and contrast it with human performance.
This paper identifies the factors that have an impact on mobile recommender systems. Recommender systems have become a technology that has been widely used by various online applications in situations where there is an information overload problem. Numerous applications such as e-Commerce, video platforms and social networks provide personalized recommendations to their users and this has improved the user experience and vendor revenues. The development of recommender systems has been focused mostly on the proposal of new algorithms that provide more accurate recommendations. However, the use of mobile devices and the rapid growth of the internet and networking infrastructure has brought the necessity of using mobile recommender systems. The links between web and mobile recommender systems are described along with how the recommendations in mobile environments can be improved. This work is focused on identifying the links between web and mobile recommender systems and to provide solid future directions that aim to lead in a more integrated mobile recommendation domain.
Deep models that are both effective and explainable are desirable in many settings; prior explainable models have been unimodal, offering either image-based visualization of attention weights or text-based generation of post-hoc justifications. We propose a multimodal approach to explanation, and argue that the two modalities provide complementary explanatory strengths. We collect two new datasets to define and evaluate this task, and propose a novel model which can provide joint textual rationale generation and attention visualization. Our datasets define visual and textual justifications of a classification decision for activity recognition tasks (ACT-X) and for visual question answering tasks (VQA-X). We quantitatively show that training with the textual explanations not only yields better textual justification models, but also better localizes the evidence that supports the decision. We also qualitatively show cases where visual explanation is more insightful than textual explanation, and vice versa, supporting our thesis that multimodal explanation models offer significant benefits over unimodal approaches.
A large number of machine translation approaches have been developed recently with the aim of migrating content easily across languages. However, the literature suggests that many obstacles must be dealt with to achieve better automatic translations. A central issue that machine translation systems must handle is ambiguity. A promising way of overcoming this problem is using semantic web technologies. This article presents the results of a systematic review of approaches that rely on semantic web technologies within machine translation approaches for translating texts. Overall, our survey suggests that while semantic web technologies can enhance the quality of machine translation outputs for various problems, the combination of both is still in its infancy.