A term in a corpus is said to be ``bursty'' (or overdispersed) when its occurrences are concentrated in few out of many documents. In this paper, we propose Residual Inverse Collection Frequency (RICF), a statistical significance test inspired heuristic for quantifying term burstiness. The chi-squared test is, to our knowledge, the sole test of statistical significance among existing term burstiness measures. Chi-squared test term burstiness scores are computed from the collection frequency statistic (i.e., the proportion that a specified term constitutes in relation to all terms within a corpus). However, the document frequency of a term (i.e., the proportion of documents within a corpus in which a specific term occurs) is exploited by certain other widely used term burstiness measures. RICF addresses this shortcoming of the chi-squared test by virtue of its term burstiness scores systematically incorporating both the collection frequency and document frequency statistics. We evaluate the RICF measure on a domain-specific technical terminology extraction task using the GENIA Term corpus benchmark, which comprises 2,000 annotated biomedical article abstracts. RICF generally outperformed the chi-squared test in terms of precision at k score with percent improvements of 0.00% (P@10), 6.38% (P@50), 6.38% (P@100), 2.27% (P@500), 2.61% (P@1000), and 1.90% (P@5000). Furthermore, RICF performance was competitive with the performances of other well-established measures of term burstiness. Based on these findings, we consider our contributions in this paper as a promising starting point for future exploration in leveraging statistical significance testing in text analysis.
Intracranial aneurysms are the leading cause of stroke. One of the established treatment approaches is the embolization induced by coil insertion. However, the prediction of treatment and subsequent changed flow characteristics in the aneurysm, is still an open problem. In this work, we present an approach based on patient specific geometry and parameters including a coil representation as inhomogeneous porous medium. The model consists of the volume-averaged Navier-Stokes equations including the non-Newtonian blood rheology. We solve these equations using a problem-adapted lattice Boltzmann method and present a comparison between fully-resolved and volume-averaged simulations. The results indicate the validity of the model. Overall, this workflow allows for patient specific assessment of the flow due to potential treatment.
From robots that replace workers to robots that serve as helpful colleagues, the field of robotic automation is experiencing a new trend that represents a huge challenge for component manufacturers. The contribution starts from an innovative vision that sees an ever closer collaboration between Cobot, able to do a specific physical job with precision, the AI world, able to analyze information and support the decision-making process, and the man able to have a strategic vision of the future.
We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.
Modeling the behavior of biological tissues and organs often necessitates the knowledge of their shape in the absence of external loads. However, when their geometry is acquired in-vivo through imaging techniques, bodies are typically subject to mechanical deformation due to the presence of external forces, and the load-free configuration needs to be reconstructed. This paper addresses this crucial and frequently overlooked topic, known as the inverse elasticity problem (IEP), by delving into both theoretical and numerical aspects, with a particular focus on cardiac mechanics. In this work, we extend Shield's seminal work to determine the structure of the IEP with arbitrary material inhomogeneities and in the presence of both body and active forces. These aspects are fundamental in computational cardiology, and we show that they may break the variational structure of the inverse problem. In addition, we show that the inverse problem might have no solution even in the presence of constant Neumann boundary conditions and a polyconvex strain energy functional. We then present the results of extensive numerical tests to validate our theoretical framework, and to characterize the computational challenges associated with a direct numerical approximation of the IEP. Specifically, we show that this framework outperforms existing approaches both in terms of robustness and optimality, such as Sellier's iterative procedure, even when the latter is improved with acceleration techniques. A notable discovery is that multigrid preconditioners are, in contrast to standard elasticity, not efficient, where a one-level additive Schwarz and generalized Dryja-Smith-Widlund provide a much more reliable alternative. Finally, we successfully address the IEP for a full-heart geometry, demonstrating that the IEP formulation can compute the stress-free configuration in real-life scenarios.
Non-Hermitian topological phases can produce some remarkable properties, compared with their Hermitian counterpart, such as the breakdown of conventional bulk-boundary correspondence and the non-Hermitian topological edge mode. Here, we introduce several algorithms with multi-layer perceptron (MLP), and convolutional neural network (CNN) in the field of deep learning, to predict the winding of eigenvalues non-Hermitian Hamiltonians. Subsequently, we use the smallest module of the periodic circuit as one unit to construct high-dimensional circuit data features. Further, we use the Dense Convolutional Network (DenseNet), a type of convolutional neural network that utilizes dense connections between layers to design a non-Hermitian topolectrical Chern circuit, as the DenseNet algorithm is more suitable for processing high-dimensional data. Our results demonstrate the effectiveness of the deep learning network in capturing the global topological characteristics of a non-Hermitian system based on training data.
Compositional data are contemporarily defined as positive vectors, the ratios among whose elements are of interest to the researcher. Financial statement analysis by means of accounting ratios fulfils this definition to the letter. Compositional data analysis solves the major problems in statistical analysis of standard financial ratios at industry level, such as skewness, non-normality, non-linearity and dependence of the results on the choice of which accounting figure goes to the numerator and to the denominator of the ratio. In spite of this, compositional applications to financial statement analysis are still rare. In this article, we present some transformations within compositional data analysis that are particularly useful for financial statement analysis. We show how to compute industry or sub-industry means of standard financial ratios from a compositional perspective. We show how to visualise firms in an industry with a compositional biplot, to classify them with compositional cluster analysis and to relate financial and non-financial indicators with compositional regression models. We show an application to the accounting statements of Spanish wineries using DuPont analysis, and a step-by-step tutorial to the compositional freeware CoDaPack.
Instrumental variables are widely used in econometrics and epidemiology for identifying and estimating causal effects when an exposure of interest is confounded by unmeasured factors. Despite this popularity, the assumptions invoked to justify the use of instruments differ substantially across the literature. Similarly, statistical approaches for estimating the resulting causal quantities vary considerably, and often rely on strong parametric assumptions. In this work, we compile and organize structural conditions that nonparametrically identify conditional average treatment effects, average treatment effects among the treated, and local average treatment effects, with a focus on identification formulae invoking the conditional Wald estimand. Moreover, we build upon existing work and propose nonparametric efficient estimators of functionals corresponding to marginal and conditional causal contrasts resulting from the various identification paradigms. We illustrate the proposed methods on an observational study examining the effects of operative care on adverse events for cholecystitis patients, and a randomized trial assessing the effects of market participation on political views.
Intractable is the problem of finding two link-disjoint paths of minimal cost if the path cost is limited since it can be a special case of the partition problem. In optical networks, this limit can be introduced by the signal modulation reach. Even without this limit, the existing literature suggested the problem intractable because of the spectrum continuity and contiguity constraints, but we show that the problem can be solved exactly with the recently-proposed generic Dijkstra algorithm over a polynomially-bounded search space, thus proving the problem tractable.
We show that a previously introduced key exchange based on a congruence-simple semiring action is not secure by providing an attack that reveals the shared key from the distributed public information for any of such semirings
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.