亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advancements in generative artificial intelligence (AI) have raised concerns about their potential to create convincing fake social media accounts, but empirical evidence is lacking. In this paper, we present a systematic analysis of Twitter(X) accounts using human faces generated by Generative Adversarial Networks (GANs) for their profile pictures. We present a dataset of 1,353 such accounts and show that they are used to spread scams, spam, and amplify coordinated messages, among other inauthentic activities. Leveraging a feature of GAN-generated faces -- consistent eye placement -- and supplementing it with human annotation, we devise an effective method for identifying GAN-generated profiles in the wild. Applying this method to a random sample of active Twitter users, we estimate a lower bound for the prevalence of profiles using GAN-generated faces between 0.021% and 0.044% -- around 10K daily active accounts. These findings underscore the emerging threats posed by multimodal generative AI. We release the source code of our detection method and the data we collect to facilitate further investigation. Additionally, we provide practical heuristics to assist social media users in recognizing such accounts.

相關內容

生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)式(shi)人工(gong)(gong)智能是利用復雜(za)的(de)(de)算(suan)法、模(mo)型和(he)規則,從大規模(mo)數據(ju)集中學習,以(yi)創(chuang)造新的(de)(de)原創(chuang)內容的(de)(de)人工(gong)(gong)智能技(ji)術(shu)(shu)。這(zhe)項技(ji)術(shu)(shu)能夠創(chuang)造文本、圖(tu)片、聲音(yin)、視頻(pin)(pin)和(he)代碼(ma)等多種類型的(de)(de)內容,全面(mian)超越了(le)傳統軟(ruan)件的(de)(de)數據(ju)處理和(he)分析能力。2022年末,OpenAI推出(chu)的(de)(de)ChatGPT標志著這(zhe)一技(ji)術(shu)(shu)在文本生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)領域取得了(le)顯著進展,2023年被稱為生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)式(shi)人工(gong)(gong)智能的(de)(de)突破之年。這(zhe)項技(ji)術(shu)(shu)從單一的(de)(de)語言生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)逐步向多模(mo)態、具身化(hua)快速(su)發展。在圖(tu)像(xiang)生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)方(fang)面(mian),生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)系統在解釋提示和(he)生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)逼真輸出(chu)方(fang)面(mian)取得了(le)顯著的(de)(de)進步。同時(shi),視頻(pin)(pin)和(he)音(yin)頻(pin)(pin)的(de)(de)生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)技(ji)術(shu)(shu)也在迅速(su)發展,這(zhe)為虛擬現(xian)實和(he)元宇宙的(de)(de)實現(xian)提供了(le)新的(de)(de)途(tu)徑。生(sheng)(sheng)(sheng)成(cheng)(cheng)(cheng)(cheng)式(shi)人工(gong)(gong)智能技(ji)術(shu)(shu)在各行業、各領域都具有(you)廣(guang)泛的(de)(de)應用前景。

Consider a hiring process with candidates coming from different universities. It is easy to order candidates with the same background, yet it can be challenging to compare them otherwise. The latter case requires additional costly assessments, leading to a potentially high total cost for the hiring organization. Given an assigned budget, what would be an optimal strategy to select the most qualified candidate? We model the above problem as a multicolor secretary problem, allowing comparisons between candidates from distinct groups at a fixed cost. Our study explores how the allocated budget enhances the success probability of online selection algorithms.

Restricted maximum likelihood (REML) estimation is a widely accepted and frequently used method for fitting linear mixed models, with its principal advantage being that it produces less biased estimates of the variance components. However, the concept of REML does not immediately generalize to the setting of non-normally distributed responses, and it is not always clear the extent to which, either asymptotically or in finite samples, such generalizations reduce the bias of variance component estimates compared to standard unrestricted maximum likelihood estimation. In this article, we review various attempts that have been made over the past four decades to extend REML estimation in generalized linear mixed models. We establish four major classes of approaches, namely approximate linearization, integrated likelihood, modified profile likelihoods, and direct bias correction of the score function, and show that while these four classes may have differing motivations and derivations, they often arrive at a similar if not the same REML estimate. We compare the finite sample performance of these four classes through a numerical study involving binary and count data, with results demonstrating that they perform similarly well in reducing the finite sample bias of variance components.

Social networks are the fabric of society and the subject of frequent visual analysis. Closed triads represent triangular relationships between three people in a social network and are significant for understanding inherent interconnections and influence within the network. The most common methods for representing social networks (node-link diagrams and adjacency matrices) are not optimal for understanding triangles. We propose extending the adjacency matrix form to 3D for better visualization of network triads. We design a 3D matrix reordering technique and implement an immersive interactive system to assist in visualizing and analyzing closed triads in social networks. A user study and usage scenarios demonstrate that our method provides substantial added value over node-link diagrams in improving the efficiency and accuracy of manipulating and understanding the social network triads.

Modern regression applications can involve hundreds or thousands of variables which motivates the use of variable selection methods. Bayesian variable selection defines a posterior distribution on the possible subsets of the variables (which are usually termed models) to express uncertainty about which variables are strongly linked to the response. This can be used to provide Bayesian model averaged predictions or inference, and to understand the relative importance of different variables. However, there has been little work on meaningful representations of this uncertainty beyond first order summaries. We introduce Cartesian credible sets to address this gap. The elements of these sets are formed by concatenating sub-models defined on each block of a partition of the variables. Investigating these sub-models allow us to understand whether the models in the Cartesian credible set always/never/sometimes include a particular variable or group of variables and provide a useful summary of model uncertainty. We introduce methods to find these sets that emphasize ease of understanding. The potential of the method is illustrated on regression problems with both small and large numbers of variables.

Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion regulation and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data will be publicly available from //github.com/Sahandfer/EmoBench.

The rapid advancement of artificial intelligence (AI) has highlighted ChatGPT as a pivotal technology in the field of information retrieval (IR). Distinguished from its predecessors, ChatGPT offers significant benefits that have attracted the attention of both the industry and academic communities. While some view ChatGPT as a groundbreaking innovation, others attribute its success to the effective integration of product development and market strategies. The emergence of ChatGPT, alongside GPT-4, marks a new phase in Generative AI, generating content that is distinct from training examples and exceeding the capabilities of the prior GPT-3 model by OpenAI. Unlike the traditional supervised learning approach in IR tasks, ChatGPT challenges existing paradigms, bringing forth new challenges and opportunities regarding text quality assurance, model bias, and efficiency. This paper seeks to examine the impact of ChatGPT on IR tasks and offer insights into its potential future developments.

We propose a classification of all one-dimensional discrete statistical models with maximum likelihood degree one based on their rational parametrization. We show how all such models can be constructed from members of a smaller class of 'fundamental models' using a finite number of simple operations. We introduce 'chipsplitting games', a class of combinatorial games on a grid which we use to represent fundamental models. This combinatorial perspective enables us to show that there are only finitely many fundamental models in the probability simplex $\Delta_n$ for $n\leq 4$.

Recent advancements in deep learning generative models have raised concerns as they can create highly convincing counterfeit images and videos. This poses a threat to people's integrity and can lead to social instability. To address this issue, there is a pressing need to develop new computational models that can efficiently detect forged content and alert users to potential image and video manipulations. This paper presents a comprehensive review of recent studies for deepfake content detection using deep learning-based approaches. We aim to broaden the state-of-the-art research by systematically reviewing the different categories of fake content detection. Furthermore, we report the advantages and drawbacks of the examined works, and prescribe several future directions towards the issues and shortcomings still unsolved on deepfake detection.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

北京阿比特科技有限公司