亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural machine translation (NMT) has progressed rapidly over the past several years, and modern models are able to achieve relatively high quality using only monolingual text data, an approach dubbed Unsupervised Machine Translation (UNMT). However, these models still struggle in a variety of ways, including aspects of translation that for a human are the easiest - for instance, correctly translating common nouns. This work explores a cheap and abundant resource to combat this problem: bilingual lexica. We test the efficacy of bilingual lexica in a real-world set-up, on 200-language translation models trained on web-crawled text. We present several findings: (1) using lexical data augmentation, we demonstrate sizable performance gains for unsupervised translation; (2) we compare several families of data augmentation, demonstrating that they yield similar improvements, and can be combined for even greater improvements; (3) we demonstrate the importance of carefully curated lexica over larger, noisier ones, especially with larger models; and (4) we compare the efficacy of multilingual lexicon data versus human-translated parallel data. Finally, we open-source GATITOS (available at //github.com/google-research/url-nlp/tree/main/gatitos), a new multilingual lexicon for 26 low-resource languages, which had the highest performance among lexica in our experiments.

相關內容

數據增強在機器學習領域多指采用一些方法(比如數據蒸餾,正負樣本均衡等)來提高模型數據集的質量,增強數據。

Contrastive learning has been widely studied in sentence representation learning. However, earlier works mainly focus on the construction of positive examples, while in-batch samples are often simply treated as negative examples. This approach overlooks the importance of selecting appropriate negative examples, potentially leading to a scarcity of hard negatives and the inclusion of false negatives. To address these issues, we propose ClusterNS (Clustering-aware Negative Sampling), a novel method that incorporates cluster information into contrastive learning for unsupervised sentence representation learning. We apply a modified K-means clustering algorithm to supply hard negatives and recognize in-batch false negatives during training, aiming to solve the two issues in one unified framework. Experiments on semantic textual similarity (STS) tasks demonstrate that our proposed ClusterNS compares favorably with baselines in unsupervised sentence representation learning. Our code has been made publicly available.

Initiated by the University Consortium of Geographic Information Science (UCGIS), GIS&T Body of Knowledge (BoK) is a community-driven endeavor to define, develop, and document geospatial topics related to geographic information science and technologies (GIS&T). In recent years, GIS&T BoK has undergone rigorous development in terms of its topic re-organization and content updating, resulting in a new digital version of the project. While the BoK topics provide useful materials for researchers and students to learn about GIS, the semantic relationships among the topics, such as semantic similarity, should also be identified so that a better and automated topic navigation can be achieved. Currently, the related topics are either defined manually by editors or authors, which may result in an incomplete assessment of topic relationship. To address this challenge, our research evaluates the effectiveness of multiple natural language processing (NLP) techniques in extracting semantics from text, including both deep neural networks and traditional machine learning approaches. Besides, a novel text summarization - KACERS (Keyword-Aware Cross-Encoder-Ranking Summarizer) - is proposed to generate a semantic summary of scientific publications. By identifying the semantic linkages among key topics, this work provides guidance for future development and content organization of the GIS&T BoK project. It also offers a new perspective on the use of machine learning techniques for analyzing scientific publications, and demonstrate the potential of KACERS summarizer in semantic understanding of long text documents.

Semantic Image Synthesis (SIS) is a subclass of image-to-image translation where a semantic layout is used to generate a photorealistic image. State-of-the-art conditional Generative Adversarial Networks (GANs) need a huge amount of paired data to accomplish this task while generic unpaired image-to-image translation frameworks underperform in comparison, because they color-code semantic layouts and learn correspondences in appearance instead of semantic content. Starting from the assumption that a high quality generated image should be segmented back to its semantic layout, we propose a new Unsupervised paradigm for SIS (USIS) that makes use of a self-supervised segmentation loss and whole image wavelet based discrimination. Furthermore, in order to match the high-frequency distribution of real images, a novel generator architecture in the wavelet domain is proposed. We test our methodology on 3 challenging datasets and demonstrate its ability to bridge the performance gap between paired and unpaired models.

As predictive models -- e.g., from machine learning -- give likely outcomes, they may be used to reason on the effect of an intervention, a causal-inference task. The increasing complexity of health data has opened the door to a plethora of models, but also the Pandora box of model selection: which of these models yield the most valid causal estimates? Here we highlight that classic machine-learning model selection does not select the best outcome models for causal inference. Indeed, causal model selection should control both outcome errors for each individual, treated or not treated, whereas only one outcome is observed. Theoretically, simple risks used in machine learning do not control causal effects when treated and non-treated population differ too much. More elaborate risks build proxies of the causal error using ``nuisance'' re-weighting to compute it on the observed data. But does computing these nuisance adds noise to model selection? Drawing from an extensive empirical study, we outline a good causal model-selection procedure: using the so-called $R\text{-risk}$; using flexible estimators to compute the nuisance models on the train set; and splitting out 10\% of the data to compute risks.

Recent studies have shown that dual encoder models trained with the sentence-level translation ranking task are effective methods for cross-lingual sentence embedding. However, our research indicates that token-level alignment is also crucial in multilingual scenarios, which has not been fully explored previously. Based on our findings, we propose a dual-alignment pre-training (DAP) framework for cross-lingual sentence embedding that incorporates both sentence-level and token-level alignment. To achieve this, we introduce a novel representation translation learning (RTL) task, where the model learns to use one-side contextualized token representation to reconstruct its translation counterpart. This reconstruction objective encourages the model to embed translation information into the token representation. Compared to other token-level alignment methods such as translation language modeling, RTL is more suitable for dual encoder architectures and is computationally efficient. Extensive experiments on three sentence-level cross-lingual benchmarks demonstrate that our approach can significantly improve sentence embedding. Our code is available at //github.com/ChillingDream/DAP.

Speech-driven animation has gained significant traction in recent years, with current methods achieving near-photorealistic results. However, the field remains underexplored regarding non-verbal communication despite evidence demonstrating its importance in human interaction. In particular, generating laughter sequences presents a unique challenge due to the intricacy and nuances of this behaviour. This paper aims to bridge this gap by proposing a novel model capable of generating realistic laughter sequences, given a still portrait and an audio clip containing laughter. We highlight the failure cases of traditional facial animation methods and leverage recent advances in diffusion models to produce convincing laughter videos. We train our model on a diverse set of laughter datasets and introduce an evaluation metric specifically designed for laughter. When compared with previous speech-driven approaches, our model achieves state-of-the-art performance across all metrics, even when these are re-trained for laughter generation.

The success of end-to-end speech-to-text translation (ST) is often achieved by utilizing source transcripts, e.g., by pre-training with automatic speech recognition (ASR) and machine translation (MT) tasks, or by introducing additional ASR and MT data. Unfortunately, transcripts are only sometimes available since numerous unwritten languages exist worldwide. In this paper, we aim to utilize large amounts of target-side monolingual data to enhance ST without transcripts. Motivated by the remarkable success of back translation in MT, we develop a back translation algorithm for ST (BT4ST) to synthesize pseudo ST data from monolingual target data. To ease the challenges posed by short-to-long generation and one-to-many mapping, we introduce self-supervised discrete units and achieve back translation by cascading a target-to-unit model and a unit-to-speech model. With our synthetic ST data, we achieve an average boost of 2.3 BLEU on MuST-C En-De, En-Fr, and En-Es datasets. More experiments show that our method is especially effective in low-resource scenarios.

Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance.

Multilingual machine translation models can benefit from synergy between different language pairs, but also suffer from interference. While there is a growing number of sophisticated methods that aim to eliminate interference, our understanding of interference as a phenomenon is still limited. This work identifies the main factors that contribute to interference in multilingual machine translation. Through systematic experimentation, we find that interference (or synergy) are primarily determined by model size, data size, and the proportion of each language pair within the total dataset. We observe that substantial interference occurs mainly when the model is very small with respect to the available training data, and that using standard transformer configurations with less than one billion parameters largely alleviates interference and promotes synergy. Moreover, we show that tuning the sampling temperature to control the proportion of each language pair in the data is key to balancing the amount of interference between low and high resource language pairs effectively, and can lead to superior performance overall.

We present a comprehensive evaluation of Parameter-Efficient Fine-Tuning (PEFT) techniques for diverse medical image analysis tasks. PEFT is increasingly exploited as a valuable approach for knowledge transfer from pre-trained models in natural language processing, vision, speech, and cross-modal tasks, such as vision-language and text-to-image generation. However, its application in medical image analysis remains relatively unexplored. As foundation models are increasingly exploited in the medical domain, it is crucial to investigate and comparatively assess various strategies for knowledge transfer that can bolster a range of downstream tasks. Our study, the first of its kind (to the best of our knowledge), evaluates 16 distinct PEFT methodologies proposed for convolutional and transformer-based networks, focusing on image classification and text-to-image generation tasks across six medical datasets ranging in size, modality, and complexity. Through a battery of more than 600 controlled experiments, we demonstrate performance gains of up to 22% under certain scenarios and demonstrate the efficacy of PEFT for medical text-to-image generation. Further, we reveal the instances where PEFT methods particularly dominate over conventional fine-tuning approaches by studying their relationship with downstream data volume.

北京阿比特科技有限公司