亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large generative AI models (LGAIMs), such as ChatGPT, GPT-4 or Stable Diffusion, are rapidly transforming the way we communicate, illustrate, and create. However, AI regulation, in the EU and beyond, has primarily focused on conventional AI models, not LGAIMs. This paper will situate these new generative models in the current debate on trustworthy AI regulation, and ask how the law can be tailored to their capabilities. After laying technical foundations, the legal part of the paper proceeds in four steps, covering (1) direct regulation, (2) data protection, (3) content moderation, and (4) policy proposals. It suggests a novel terminology to capture the AI value chain in LGAIM settings by differentiating between LGAIM developers, deployers, professional and non-professional users, as well as recipients of LGAIM output. We tailor regulatory duties to these different actors along the value chain and suggest strategies to ensure that LGAIMs are trustworthy and deployed for the benefit of society at large. Rules in the AI Act and other direct regulation must match the specificities of pre-trained models. The paper argues for three layers of obligations concerning LGAIMs (minimum standards for all LGAIMs; high-risk obligations for high-risk use cases; collaborations along the AI value chain). In general, regulation should focus on concrete high-risk applications, and not the pre-trained model itself, and should include (i) obligations regarding transparency and (ii) risk management. Non-discrimination provisions (iii) may, however, apply to LGAIM developers. Lastly, (iv) the core of the DSA content moderation rules should be expanded to cover LGAIMs. This includes notice and action mechanisms, and trusted flaggers. In all areas, regulators and lawmakers need to act fast to keep track with the dynamics of ChatGPT et al.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · MoDELS · 語言模型化 · CASE ·
2023 年 6 月 22 日

Interpreting the meaning of legal open-textured terms is a key task of legal professionals. An important source for this interpretation is how the term was applied in previous court cases. In this paper, we evaluate the performance of GPT-4 in generating factually accurate, clear and relevant explanations of terms in legislation. We compare the performance of a baseline setup, where GPT-4 is directly asked to explain a legal term, to an augmented approach, where a legal information retrieval module is used to provide relevant context to the model, in the form of sentences from case law. We found that the direct application of GPT-4 yields explanations that appear to be of very high quality on their surface. However, detailed analysis uncovered limitations in terms of the factual accuracy of the explanations. Further, we found that the augmentation leads to improved quality, and appears to eliminate the issue of hallucination, where models invent incorrect statements. These findings open the door to the building of systems that can autonomously retrieve relevant sentences from case law and condense them into a useful explanation for legal scholars, educators or practicing lawyers alike.

Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.

Recently, ChatGPT, a representative large language model (LLM), has gained considerable attention due to its powerful emergent abilities. Some researchers suggest that LLMs could potentially replace structured knowledge bases like knowledge graphs (KGs) and function as parameterized knowledge bases. However, while LLMs are proficient at learning probabilistic language patterns based on large corpus and engaging in conversations with humans, they, like previous smaller pre-trained language models (PLMs), still have difficulty in recalling facts while generating knowledge-grounded contents. To overcome these limitations, researchers have proposed enhancing data-driven PLMs with knowledge-based KGs to incorporate explicit factual knowledge into PLMs, thus improving their performance to generate texts requiring factual knowledge and providing more informed responses to user queries. This paper reviews the studies on enhancing PLMs with KGs, detailing existing knowledge graph enhanced pre-trained language models (KGPLMs) as well as their applications. Inspired by existing studies on KGPLM, this paper proposes to enhance LLMs with KGs by developing knowledge graph-enhanced large language models (KGLLMs). KGLLM provides a solution to enhance LLMs' factual reasoning ability, opening up new avenues for LLM research.

Recent studies indicate that kernel machines can often perform similarly or better than deep neural networks (DNNs) on small datasets. The interest in kernel machines has been additionally bolstered by the discovery of their equivalence to wide neural networks in certain regimes. However, a key feature of DNNs is their ability to scale the model size and training data size independently, whereas in traditional kernel machines model size is tied to data size. Because of this coupling, scaling kernel machines to large data has been computationally challenging. In this paper, we provide a way forward for constructing large-scale general kernel models, which are a generalization of kernel machines that decouples the model and data, allowing training on large datasets. Specifically, we introduce EigenPro 3.0, an algorithm based on projected dual preconditioned SGD and show scaling to model and data sizes which have not been possible with existing kernel methods.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.

Recently, ChatGPT, along with DALL-E-2 and Codex,has been gaining significant attention from society. As a result, many individuals have become interested in related resources and are seeking to uncover the background and secrets behind its impressive performance. In fact, ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC), which involves the creation of digital content, such as images, music, and natural language, through AI models. The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace. AIGC is achieved by extracting and understanding intent information from instructions provided by human, and generating the content according to its knowledge and the intent information. In recent years, large-scale models have become increasingly important in AIGC as they provide better intent extraction and thus, improved generation results. With the growth of data and the size of the models, the distribution that the model can learn becomes more comprehensive and closer to reality, leading to more realistic and high-quality content generation. This survey provides a comprehensive review on the history of generative models, and basic components, recent advances in AIGC from unimodal interaction and multimodal interaction. From the perspective of unimodality, we introduce the generation tasks and relative models of text and image. From the perspective of multimodality, we introduce the cross-application between the modalities mentioned above. Finally, we discuss the existing open problems and future challenges in AIGC.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司