亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, distributed machine learning has garnered significant attention. However, privacy continues to be an unresolved issue within this field. Multi-key homomorphic encryption over torus (MKTFHE) is one of the promising candidates for addressing this concern. Nevertheless, there may be security risks in the decryption of MKTFHE. Moreover, to our best known, the latest works about MKTFHE only support Boolean operation and linear operation which cannot directly compute the non-linear function like Sigmoid. Therefore, it is still hard to perform common machine learning such as logistic regression and neural networks in high performance. In this paper, we first discover a possible attack on the existing distributed decryption protocol for MKTFHE and subsequently introduce secret sharing to propose a securer one. Next, we design a new MKTFHE-friendly activation function via \emph{homogenizer} and \emph{compare quads}. Finally, we utilize them to implement logistic regression and neural network training in MKTFHE. Comparing the efficiency and accuracy between using Taylor polynomials of Sigmoid and our proposed function as an activation function, the experiments show that the efficiency of our function is 10 times higher than using 7-order Taylor polynomials straightly and the accuracy of the training model is similar to using a high-order polynomial as an activation function scheme.

相關內容

Object detectors are typically trained once and for all on a fixed set of classes. However, this closed-world assumption is unrealistic in practice, as new classes will inevitably emerge after the detector is deployed in the wild. In this work, we look at ways to extend a detector trained for a set of base classes so it can i) spot the presence of novel classes, and ii) automatically enrich its repertoire to be able to detect those newly discovered classes together with the base ones. We propose PANDAS, a method for novel class discovery and detection. It discovers clusters representing novel classes from unlabeled data, and represents old and new classes with prototypes. During inference, a distance-based classifier uses these prototypes to assign a label to each detected object instance. The simplicity of our method makes it widely applicable. We experimentally demonstrate the effectiveness of PANDAS on the VOC 2012 and COCO-to-LVIS benchmarks. It performs favorably against the state of the art for this task while being computationally more affordable.

This paper tackles the challenges of implementing few-shot learning on embedded systems, specifically FPGA SoCs, a vital approach for adapting to diverse classification tasks, especially when the costs of data acquisition or labeling prove to be prohibitively high. Our contributions encompass the development of an end-to-end open-source pipeline for a few-shot learning platform for object classification on a FPGA SoCs. The pipeline is built on top of the Tensil open-source framework, facilitating the design, training, evaluation, and deployment of DNN backbones tailored for few-shot learning. Additionally, we showcase our work's potential by building and deploying a low-power, low-latency demonstrator trained on the MiniImageNet dataset with a dataflow architecture. The proposed system has a latency of 30 ms while consuming 6.2 W on the PYNQ-Z1 board.

With the rapid growth of machine learning (ML) workloads in datacenters, existing congestion control (CC) algorithms fail to deliver the required performance at scale. ML traffic is bursty and bulk-synchronous and thus requires quick reaction and strong fairness. We show that existing CC algorithms that use delay as a main signal react too slowly and are not always fair. We design SMaRTT, a simple sender-based CC algorithm that combines delay, ECN, and optional packet trimming for fast and precise window adjustments. At the core of SMaRTT lies the novel QuickAdapt algorithm that accurately estimates the bandwidth at the receiver. We show how to combine SMaRTT with a new per-packet traffic load-balancing algorithm called REPS to effectively reroute packets around congested hotspots as well as flaky or failing links. Our evaluation shows that SMaRTT alone outperforms EQDS, Swift, BBR, and MPRDMA by up to 50% on modern datacenter networks.

Generative deep learning (DL) models have been successfully adopted for vulnerability patching. However, such models require the availability of a large dataset of patches to learn from. To overcome this issue, researchers have proposed to start from models pre-trained with general knowledge, either on the programming language or on similar tasks such as bug fixing. Despite the efforts in the area of automated vulnerability patching, there is a lack of systematic studies on how these different training procedures impact the performance of DL models for such a task. This paper provides a manyfold contribution to bridge this gap, by (i) comparing existing solutions of self-supervised and supervised pre-training for vulnerability patching; and (ii) for the first time, experimenting with different kinds of prompt-tuning for this task. The study required to train/test 23 DL models. We found that a supervised pre-training focused on bug-fixing, while expensive in terms of data collection, substantially improves DL-based vulnerability patching. When applying prompt-tuning on top of this supervised pre-trained model, there is no significant gain in performance. Instead, prompt-tuning is an effective and cheap solution to substantially boost the performance of self-supervised pre-trained models, i.e., those not relying on the bug-fixing pre-training.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.

Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司