Knowledge distillation is an effective and stable method for model compression via knowledge transfer. Conventional knowledge distillation (KD) is to transfer knowledge from a large and well pre-trained teacher network to a small student network, which is a one-way process. Recently, deep mutual learning (DML) has been proposed to help student networks learn collaboratively and simultaneously. However, to the best of our knowledge, KD and DML have never been jointly explored in a unified framework to solve the knowledge distillation problem. In this paper, we investigate that the teacher model supports more trustworthy supervision signals in KD, while the student captures more similar behaviors from the teacher in DML. Based on these observations, we first propose to combine KD with DML in a unified framework. Furthermore, we propose a Semi-Online Knowledge Distillation (SOKD) method that effectively improves the performance of the student and the teacher. In this method, we introduce the peer-teaching training fashion in DML in order to alleviate the student's imitation difficulty, and also leverage the supervision signals provided by the well-trained teacher in KD. Besides, we also show our framework can be easily extended to feature-based distillation methods. Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate the proposed method achieves state-of-the-art performance.
Knowledge Distillation is a technique which aims to utilize dark knowledge to compress and transfer information from a vast, well-trained neural network (teacher model) to a smaller, less capable neural network (student model) with improved inference efficiency. This approach of distilling knowledge has gained popularity as a result of the prohibitively complicated nature of such cumbersome models for deployment on edge computing devices. Generally, the teacher models used to teach smaller student models are cumbersome in nature and expensive to train. To eliminate the necessity for a cumbersome teacher model completely, we propose a simple yet effective knowledge distillation framework that we termed Dynamic Rectification Knowledge Distillation (DR-KD). Our method transforms the student into its own teacher, and if the self-teacher makes wrong predictions while distilling information, the error is rectified prior to the knowledge being distilled. Specifically, the teacher targets are dynamically tweaked by the agency of ground-truth while distilling the knowledge gained from traditional training. Our proposed DR-KD performs remarkably well in the absence of a sophisticated cumbersome teacher model and achieves comparable performance to existing state-of-the-art teacher-free knowledge distillation frameworks when implemented by a low-cost dynamic mannered teacher. Our approach is all-encompassing and can be utilized for any deep neural network training that requires categorization or object recognition. DR-KD enhances the test accuracy on Tiny ImageNet by 2.65% over prominent baseline models, which is significantly better than any other knowledge distillation approach while requiring no additional training costs.
Knowledge Graph Embedding (KGE) is a popular method for KG reasoning and training KGEs with higher dimension are usually preferred since they have better reasoning capability. However, high-dimensional KGEs pose huge challenges to storage and computing resources and are not suitable for resource-limited or time-constrained applications, for which faster and cheaper reasoning is necessary. To address this problem, we propose DualDE, a knowledge distillation method to build low-dimensional student KGE from pre-trained high-dimensional teacher KGE. DualDE considers the dual-influence between the teacher and the student. In DualDE, we propose a soft label evaluation mechanism to adaptively assign different soft label and hard label weights to different triples, and a two-stage distillation approach to improve the student's acceptance of the teacher. Our DualDE is general enough to be applied to various KGEs. Experimental results show that our method can successfully reduce the embedding parameters of a high-dimensional KGE by 7 times - 15 times and increase the inference speed by 2 times - 6 times while retaining a high performance. We also experimentally prove the effectiveness of our soft label evaluation mechanism and two-stage distillation approach via ablation study.
While self-supervised representation learning (SSL) has proved to be effective in the large model, there is still a huge gap between the SSL and supervised method in the lightweight model when following the same solution. We delve into this problem and find that the lightweight model is prone to collapse in semantic space when simply performing instance-wise contrast. To address this issue, we propose a relation-wise contrastive paradigm with Relation Knowledge Distillation (ReKD). We introduce a heterogeneous teacher to explicitly mine the semantic information and transferring a novel relation knowledge to the student (lightweight model). The theoretical analysis supports our main concern about instance-wise contrast and verify the effectiveness of our relation-wise contrastive learning. Extensive experimental results also demonstrate that our method achieves significant improvements on multiple lightweight models. Particularly, the linear evaluation on AlexNet obviously improves the current state-of-art from 44.7% to 50.1%, which is the first work to get close to the supervised 50.5%. Code will be made available.
Despite the success of Knowledge Distillation (KD) on image classification, it is still challenging to apply KD on object detection due to the difficulty in locating knowledge. In this paper, we propose an instance-conditional distillation framework to find desired knowledge. To locate knowledge of each instance, we use observed instances as condition information and formulate the retrieval process as an instance-conditional decoding process. Specifically, information of each instance that specifies a condition is encoded as query, and teacher's information is presented as key, we use the attention between query and key to measure the correlation, formulated by the transformer decoder. To guide this module, we further introduce an auxiliary task that directs to instance localization and identification, which are fundamental for detection. Extensive experiments demonstrate the efficacy of our method: we observe impressive improvements under various settings. Notably, we boost RetinaNet with ResNet-50 backbone from 37.4 to 40.7 mAP (+3.3) under 1x schedule, that even surpasses the teacher (40.4 mAP) with ResNet-101 backbone under 3x schedule. Code will be released soon.
Recommender Systems (RS) have employed knowledge distillation which is a model compression technique training a compact student model with the knowledge transferred from a pre-trained large teacher model. Recent work has shown that transferring knowledge from the teacher's intermediate layer significantly improves the recommendation quality of the student. However, they transfer the knowledge of individual representation point-wise and thus have a limitation in that primary information of RS lies in the relations in the representation space. This paper proposes a new topology distillation approach that guides the student by transferring the topological structure built upon the relations in the teacher space. We first observe that simply making the student learn the whole topological structure is not always effective and even degrades the student's performance. We demonstrate that because the capacity of the student is highly limited compared to that of the teacher, learning the whole topological structure is daunting for the student. To address this issue, we propose a novel method named Hierarchical Topology Distillation (HTD) which distills the topology hierarchically to cope with the large capacity gap. Our extensive experiments on real-world datasets show that the proposed method significantly outperforms the state-of-the-art competitors. We also provide in-depth analyses to ascertain the benefit of distilling the topology for RS.
Semi-supervised learning on graphs is an important problem in the machine learning area. In recent years, state-of-the-art classification methods based on graph neural networks (GNNs) have shown their superiority over traditional ones such as label propagation. However, the sophisticated architectures of these neural models will lead to a complex prediction mechanism, which could not make full use of valuable prior knowledge lying in the data, e.g., structurally correlated nodes tend to have the same class. In this paper, we propose a framework based on knowledge distillation to address the above issues. Our framework extracts the knowledge of an arbitrary learned GNN model (teacher model), and injects it into a well-designed student model. The student model is built with two simple prediction mechanisms, i.e., label propagation and feature transformation, which naturally preserves structure-based and feature-based prior knowledge, respectively. In specific, we design the student model as a trainable combination of parameterized label propagation and feature transformation modules. As a result, the learned student can benefit from both prior knowledge and the knowledge in GNN teachers for more effective predictions. Moreover, the learned student model has a more interpretable prediction process than GNNs. We conduct experiments on five public benchmark datasets and employ seven GNN models including GCN, GAT, APPNP, SAGE, SGC, GCNII and GLP as the teacher models. Experimental results show that the learned student model can consistently outperform its corresponding teacher model by 1.4% - 4.7% on average. Code and data are available at //github.com/BUPT-GAMMA/CPF
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works using KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging, since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and the inconsistency of described facts. In this paper, we propose KEnS, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs. KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to combine prediction results from embeddings of multiple language-specific KGs, for which multiple ensemble techniques are investigated. Experiments on five real-world language-specific KGs show that KEnS consistently improves state-of-the-art methods on KG completion, via effectively identifying and leveraging complementary knowledge.
Knowledge distillation is typically conducted by training a small model (the student) to mimic a large and cumbersome model (the teacher). The idea is to compress the knowledge from the teacher by using its output probabilities as soft-labels to optimize the student. However, when the teacher is considerably large, there is no guarantee that the internal knowledge of the teacher will be transferred into the student; even if the student closely matches the soft-labels, its internal representations may be considerably different. This internal mismatch can undermine the generalization capabilities originally intended to be transferred from the teacher to the student. In this paper, we propose to distill the internal representations of a large model such as BERT into a simplified version of it. We formulate two ways to distill such representations and various algorithms to conduct the distillation. We experiment with datasets from the GLUE benchmark and consistently show that adding knowledge distillation from internal representations is a more powerful method than only using soft-label distillation.
Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific features and thus resulting in suboptimal video representation. Second, high computational and memory cost hinders their application in real-world scenarios. In this paper, we propose a graph-based distillation framework to address these problems: (1) We propose logits graph and representation graph to transfer knowledge from multiple self-supervised tasks, where the former distills classifier-level knowledge by solving a multi-distribution joint matching problem, and the latter distills internal feature knowledge from pairwise ensembled representations with tackling the challenge of heterogeneity among different features; (2) The proposal that adopts a teacher-student framework can reduce the redundancy of knowledge learnt from teachers dramatically, leading to a lighter student model that solves classification task more efficiently. Experimental results on 3 video datasets validate that our proposal not only helps learn better video representation but also compress model for faster inference.