亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Beamforming is a signal processing technique to steer, shape, and focus an electromagnetic wave using an array of sensors toward a desired direction. It has been used in several engineering applications such as radar, sonar, acoustics, astronomy, seismology, medical imaging, and communications. With the advances in multi-antenna technologies largely for radar and communications, there has been a great interest on beamformer design mostly relying on convex/nonconvex optimization. Recently, machine learning is being leveraged for obtaining attractive solutions to more complex beamforming problems. This article captures the evolution of beamforming in the last twenty-five years from convex-to-nonconvex optimization and optimization-to-learning approaches. It provides a glimpse of this important signal processing technique into a variety of transmit-receive architectures, propagation zones, paths, and conventional/emerging applications.

相關內容

An experimental comparison of two or more optimization algorithms requires the same computational resources to be assigned to each algorithm. When a maximum runtime is set as the stopping criterion, all algorithms need to be executed in the same machine if they are to use the same resources. Unfortunately, the implementation code of the algorithms is not always available, which means that running the algorithms to be compared in the same machine is not always possible. And even if they are available, some optimization algorithms might be costly to run, such as training large neural-networks in the cloud. In this paper, we consider the following problem: how do we compare the performance of a new optimization algorithm B with a known algorithm A in the literature if we only have the results (the objective values) and the runtime in each instance of algorithm A? Particularly, we present a methodology that enables a statistical analysis of the performance of algorithms executed in different machines. The proposed methodology has two parts. Firstly, we propose a model that, given the runtime of an algorithm in a machine, estimates the runtime of the same algorithm in another machine. This model can be adjusted so that the probability of estimating a runtime longer than what it should be is arbitrarily low. Secondly, we introduce an adaptation of the one-sided sign test that uses a modified \textit{p}-value and takes into account that probability. Such adaptation avoids increasing the probability of type I error associated with executing algorithms A and B in different machines.

Artificial intelligence (AI) is envisioned to play a key role in future wireless technologies, with deep neural networks (DNNs) enabling digital receivers to learn to operate in challenging communication scenarios. However, wireless receiver design poses unique challenges that fundamentally differ from those encountered in traditional deep learning domains. The main challenges arise from the limited power and computational resources of wireless devices, as well as from the dynamic nature of wireless communications, which causes continual changes to the data distribution. These challenges impair conventional AI based on highly-parameterized DNNs, motivating the development of adaptive, flexible, and light-weight AI for wireless communications, which is the focus of this article. Here, we propose that AI-based design of wireless receivers requires rethinking of the three main pillars of AI: architecture, data, and training algorithms. In terms of architecture, we review how to design compact DNNs via model-based deep learning. Then, we discuss how to acquire training data for deep receivers without compromising spectral efficiency. Finally, we review efficient, reliable, and robust training algorithms via meta-learning and generalized Bayesian learning. Numerical results are presented to demonstrate the complementary effectiveness of each of the surveyed methods. We conclude by presenting opportunities for future research on the development of practical deep receivers

For forthcoming 5G networks, Non-Orthogonal Multiple Access (NOMA) is a very promising techniques. and in today's world, Line of Sight communication is becoming increasingly harder to achieve. Hence, technologies like Reconfigurable Intelligent Surfaces (RIS) emerge. RIS-aided NOMA networks is a widely researched implementation of RIS. The environment where these networks are employed are non-homogeneous & non-linear in nature. The effectiveness of these systems must thus be evaluated using generalized fading channels. In this paper, the performance of a RIS-aided NOMA is compared with conventional NOMA in alpha-mu and kappa-mu channels. This paper also shows that the well-known fading distribution are special cases of these generalized fading channels, both analytically and through simulation.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司