In the recent years, zero-correlation zone (ZCZ) sequences have been studied broadly due to their significant application in quasi-synchronous code-division multiple access (QS-CDMA) systems. In this paper, we propose a direct construction of ZCZ sequences of prime-power-length using multivariable functions. In the proposed construction, we first propose a class of multivariable functions to generate a finite number of vectors having some specific properties which is further used to generate another class of multivariable functions to generate the desired ZCZ sequence sets. The proposed construction achieve the upper bound of $NZ\leq L$ asymptotically where $N,Z,$ and $L$ are number of sequences, ZCZ width, and length of sequence respectively. The constructed ZCZ sequence set is optimal for power of two length and asymptotically optimal for non power of two length. Additionally, we introduce a linear code that corresponds to the constructed ZCZ sequence set.
The utilization of cloud environments to deploy scientific workflow applications is an emerging trend in scientific community. In this area, the main issue is the scheduling of workflows, which is known as an NP-complete problem. Apart from respecting user-defined deadline and budget, energy consumption is a major concern for cloud providers in implementing the scheduling strategy. The types and the number of virtual machines (VMs) used are determinant to handle those issues, and their determination is highly influenced by the structure of the workflow. In this paper, we propose two workflow scheduling algorithms that take advantage of the structural properties of the workflows. The first algorithm is called Structure-based Multi-objective Workflow Scheduling with an Optimal instance type (SMWSO). It introduces a new approach to determine the optimal instance type along with the optimal number of VMs to be provisioned. We also consider the use of heterogeneous VMs in the Structure-based Multi-objective Workflow Scheduling with Heterogeneous instance types (SMWSH), to highlight the algorithm's strength within the heterogeneous environment. The simulation results show that our proposal produces better energy-efficiency in 80% of workflow/workload scenarios, and save more than 50% overall energy compared to a recent state-of-the-art algorithm.
Petri nets, equivalently presentable as vector addition systems with states, are an established model of concurrency with widespread applications. The reachability problem, where we ask whether from a given initial configuration there exists a sequence of valid execution steps reaching a given final configuration, is the central algorithmic problem for this model. The complexity of the problem has remained, until recently, one of the hardest open questions in verification of concurrent systems. A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a breakthrough non-elementary lower bound by Czerwi{\'n}ski, Lasota, Lazic, Leroux and Mazowiecki in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwi{\'n}ski and Orlikowski, and independently by Leroux, established the complexity of the problem. Our primary contribution is an improvement of the former construction, making it conceptually simpler and more direct. On the way we improve the lower bound for vector addition systems with states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwi{\'n}ski and Orlikowski prove $F_k$-hardness (hardness for $k$th level in Grzegorczyk Hierarchy) in dimension $6k$, our simplified construction yields $F_k$-hardness already in dimension $3k+2$.
The ever-continuing explosive growth of on-demand content distribution has imposed great pressure on mobile/wireless network infrastructures. To ease congestion in the network and to increase perceived user experience, caching of popular content closer to the end-users can play a significant role and as such this issue has received significant attention over the last few years. Additionally, energy efficiency is treated as a fundamental requirement in the design of next-generation mobile networks. However, there has been little attention to the overlapping area between energy efficiency and network caching especially when considering multipath routing. To this end, this paper proposes an energy-efficient caching with multipath routing support. The proposed scheme provides a joint anchoring of popular content into a set of potential caching nodes with optimized multipath support whilst ensuring a balance between transmission and caching energy cost. The proposed model also considers different content delivery modes, such as multicast and unicast. Two separated Integer-Linear Programming (ILP) models are formulated for each delivery mode. To tackle the curse of dimensionality we then provide a greedy simulated annealing algorithm, which not only reduces the time complexity but also provides a competitive performance. A wide set of numerical investigations reveal that the proposed scheme reduces the energy consumption up to 80% compared with other widely used caching approaches under the premise of network resource limitation. Sensitivity analysis to different parameters is also meticulously discussed in this paper.
We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Although recent neural conversation models have shown great potential, they often generate bland and generic responses. While various approaches have been explored to diversify the output of the conversation model, the improvement often comes at the cost of decreased relevance. In this paper, we propose a method to jointly optimize diversity and relevance that essentially fuses the latent space of a sequence-to-sequence model and that of an autoencoder model by leveraging novel regularization terms. As a result, our approach induces a latent space in which the distance and direction from the predicted response vector roughly match the relevance and diversity, respectively. This property also lends itself well to an intuitive visualization of the latent space. Both automatic and human evaluation results demonstrate that the proposed approach brings significant improvement compared to strong baselines in both diversity and relevance.
In structure learning, the output is generally a structure that is used as supervision information to achieve good performance. Considering the interpretation of deep learning models has raised extended attention these years, it will be beneficial if we can learn an interpretable structure from deep learning models. In this paper, we focus on Recurrent Neural Networks (RNNs) whose inner mechanism is still not clearly understood. We find that Finite State Automaton (FSA) that processes sequential data has more interpretable inner mechanism and can be learned from RNNs as the interpretable structure. We propose two methods to learn FSA from RNN based on two different clustering methods. We first give the graphical illustration of FSA for human beings to follow, which shows the interpretability. From the FSA's point of view, we then analyze how the performance of RNNs are affected by the number of gates, as well as the semantic meaning behind the transition of numerical hidden states. Our results suggest that RNNs with simple gated structure such as Minimal Gated Unit (MGU) is more desirable and the transitions in FSA leading to specific classification result are associated with corresponding words which are understandable by human beings.
Driven by successes in deep learning, computer vision research has begun to move beyond object detection and image classification to more sophisticated tasks like image captioning or visual question answering. Motivating such endeavors is the desire for models to capture not only objects present in an image, but more fine-grained aspects of a scene such as relationships between objects and their attributes. Scene graphs provide a formal construct for capturing these aspects of an image. Despite this, there have been only a few recent efforts to generate scene graphs from imagery. Previous works limit themselves to settings where bounding box information is available at train time and do not attempt to generate scene graphs with attributes. In this paper we propose a method, based on recent advancements in Generative Adversarial Networks, to overcome these deficiencies. We take the approach of first generating small subgraphs, each describing a single statement about a scene from a specific region of the input image chosen using an attention mechanism. By doing so, our method is able to produce portions of the scene graphs with attribute information without the need for bounding box labels. Then, the complete scene graph is constructed from these subgraphs. We show that our model improves upon prior work in scene graph generation on state-of-the-art data sets and accepted metrics. Further, we demonstrate that our model is capable of handling a larger vocabulary size than prior work has attempted.
This paper develops a general framework for learning interpretable data representation via Long Short-Term Memory (LSTM) recurrent neural networks over hierarchal graph structures. Instead of learning LSTM models over the pre-fixed structures, we propose to further learn the intermediate interpretable multi-level graph structures in a progressive and stochastic way from data during the LSTM network optimization. We thus call this model the structure-evolving LSTM. In particular, starting with an initial element-level graph representation where each node is a small data element, the structure-evolving LSTM gradually evolves the multi-level graph representations by stochastically merging the graph nodes with high compatibilities along the stacked LSTM layers. In each LSTM layer, we estimate the compatibility of two connected nodes from their corresponding LSTM gate outputs, which is used to generate a merging probability. The candidate graph structures are accordingly generated where the nodes are grouped into cliques with their merging probabilities. We then produce the new graph structure with a Metropolis-Hasting algorithm, which alleviates the risk of getting stuck in local optimums by stochastic sampling with an acceptance probability. Once a graph structure is accepted, a higher-level graph is then constructed by taking the partitioned cliques as its nodes. During the evolving process, representation becomes more abstracted in higher-levels where redundant information is filtered out, allowing more efficient propagation of long-range data dependencies. We evaluate the effectiveness of structure-evolving LSTM in the application of semantic object parsing and demonstrate its advantage over state-of-the-art LSTM models on standard benchmarks.