This paper presents a novel multi-modal Multi-Object Tracking (MOT) algorithm for self-driving cars that combines camera and LiDAR data. Camera frames are processed with a state-of-the-art 3D object detector, whereas classical clustering techniques are used to process LiDAR observations. The proposed MOT algorithm comprises a three-step association process, an Extended Kalman filter for estimating the motion of each detected dynamic obstacle, and a track management phase. The EKF motion model requires the current measured relative position and orientation of the observed object and the longitudinal and angular velocities of the ego vehicle as inputs. Unlike most state-of-the-art multi-modal MOT approaches, the proposed algorithm does not rely on maps or knowledge of the ego global pose. Moreover, it uses a 3D detector exclusively for cameras and is agnostic to the type of LiDAR sensor used. The algorithm is validated both in simulation and with real-world data, with satisfactory results.
Structure-Based Drug Design (SBDD) focuses on generating valid ligands that strongly and specifically bind to a designated protein pocket. Several methods use machine learning for SBDD to generate these ligands in 3D space, conditioned on the structure of a desired protein pocket. Recently, diffusion models have shown success here by modeling the underlying distributions of atomic positions and types. While these methods are effective in considering the structural details of the protein pocket, they often fail to explicitly consider the binding affinity. Binding affinity characterizes how tightly the ligand binds to the protein pocket, and is measured by the change in free energy associated with the binding process. It is one of the most crucial metrics for benchmarking the effectiveness of the interaction between a ligand and protein pocket. To address this, we propose BADGER: Binding Affinity Diffusion Guidance with Enhanced Refinement. BADGER is a general guidance method to steer the diffusion sampling process towards improved protein-ligand binding, allowing us to adjust the distribution of the binding affinity between ligands and proteins. Our method is enabled by using a neural network (NN) to model the energy function, which is commonly approximated by AutoDock Vina (ADV). ADV's energy function is non-differentiable, and estimates the affinity based on the interactions between a ligand and target protein receptor. By using a NN as a differentiable energy function proxy, we utilize the gradient of our learned energy function as a guidance method on top of any trained diffusion model. We show that our method improves the binding affinity of generated ligands to their protein receptors by up to 60\%, significantly surpassing previous machine learning methods. We also show that our guidance method is flexible and can be easily applied to other diffusion-based SBDD frameworks.
This paper presents a novel approach to visual simultaneous localization and mapping (SLAM) using multiple RGB-D cameras. The proposed method, Multicam-SLAM, significantly enhances the robustness and accuracy of SLAM systems by capturing more comprehensive spatial information from various perspectives. This method enables the accurate determination of pose relationships among multiple cameras without the need for overlapping fields of view. The proposed Muticam-SLAM includes a unique multi-camera model, a multi-keyframes structure, and several parallel SLAM threads. The multi-camera model allows for the integration of data from multiple cameras, while the multi-keyframes and parallel SLAM threads ensure efficient and accurate pose estimation and mapping. Extensive experiments in various environments demonstrate the superior accuracy and robustness of the proposed method compared to conventional single-camera SLAM systems. The results highlight the potential of the proposed Multicam-SLAM for more complex and challenging applications. Code is available at \url{//github.com/AlterPang/Multi_ORB_SLAM}.
In this paper, we focus on addressing the constraints faced when applying LLMs to ASR. Recent works utilize prefixLM-type models, which directly apply speech as a prefix to LLMs for ASR. We have found that optimizing speech prefixes leads to better ASR performance and propose applying RNNT loss to perform speech prefix-tuning. This is a simple approach and does not increase the model complexity or alter the inference pipeline. We also propose language-based soft prompting to further improve with frozen LLMs. Empirical analysis on realtime testset from 10 Indic languages demonstrate that our proposed speech prefix-tuning yields improvements with both frozen and fine-tuned LLMs. Our recognition results on an average of 10 Indics show that the proposed prefix-tuning with RNNT loss results in a 12\% relative improvement in WER over the baseline with a fine-tuned LLM. Our proposed approches with the frozen LLM leads to a 31\% relative improvement over basic soft-prompting prefixLM.
This paper describes a novel semi-autonomous mobile robot system designed to assist search and rescue (SAR) first responders in disaster scenarios. While robots offer significant potential in SAR missions, current solutions are limited in their ability to handle a diverse range of tasks. This gap is addressed by presenting a system capable of (1) autonomous navigation and mapping, allowing the robot to autonomously explore and map areas affected by catastrophic events, (2) radiation mapping, enabling the system to triangulate a radiation map from discrete radiation measurements to aid in identifying hazardous areas, (3) semi-autonomous substance sampling, allowing the robot to collect samples of suspicious substances and analyze them onboard with immediate classification, and (4) valve manipulation, enabling teleoperated closing of valves that control hazardous material flow. This semi-autonomous approach balances human control over critical tasks like substance sampling with efficient robot navigation in low-risk areas. The system is evaluated during three trials that simulate possible disaster scenarios, two of which have been recorded during the European Robotics Hackathon (EnRicH). Furthermore, we provide recorded sensor data as well as the implemented software system as supplemental material through a GitHub repository: //github.com/TW-Robotics/search-and-rescue-robot-IROS2024.
This paper introduces a novel formulation of the clustering problem, namely the Minimum Sum-of-Squares Clustering of Infinitely Tall Data (MSSC-ITD), and presents HPClust, an innovative set of hybrid parallel approaches for its effective solution. By utilizing modern high-performance computing techniques, HPClust enhances key clustering metrics: effectiveness, computational efficiency, and scalability. In contrast to vanilla data parallelism, which only accelerates processing time through the MapReduce framework, our approach unlocks superior performance by leveraging the multi-strategy competitive-cooperative parallelism and intricate properties of the objective function landscape. Unlike other available algorithms that struggle to scale, our algorithm is inherently parallel in nature, improving solution quality through increased scalability and parallelism, and outperforming even advanced algorithms designed for small and medium-sized datasets. Our evaluation of HPClust, featuring four parallel strategies, demonstrates its superiority over traditional and cutting-edge methods by offering better performance in the key metrics. These results also show that parallel processing not only enhances the clustering efficiency, but the accuracy as well. Additionally, we explore the balance between computational efficiency and clustering quality, providing insights into optimal parallel strategies based on dataset specifics and resource availability. This research advances our understanding of parallelism in clustering algorithms, demonstrating that a judicious hybridization of advanced parallel approaches yields optimal results for MSSC-ITD. Experiments on synthetic data further confirm HPClust's exceptional scalability and robustness to noise.
This paper presents the development of a prototype Automatic Speech Recognition (ASR) system specifically designed for Bengali biomedical data. Recent advancements in Bengali ASR are encouraging, but a lack of domain-specific data limits the creation of practical healthcare ASR models. This project bridges this gap by developing an ASR system tailored for Bengali medical terms like symptoms, severity levels, and diseases, encompassing two major dialects: Bengali and Sylheti. We train and evaluate two popular ASR frameworks on a comprehensive 46-hour Bengali medical corpus. Our core objective is to create deployable health-domain ASR systems for digital health applications, ultimately increasing accessibility for non-technical users in the healthcare sector.
This paper introduces the Visual Inverse Kinematics problem (VIK) to fill the gap between robot Inverse Kinematics (IK) and visual servo control. Different from the IK problem, the VIK problem seeks to find robot configurations subject to vision-based constraints, in addition to kinematic constraints. In this work, we develop a formulation of the VIK problem with a Field of View (FoV) constraint, enforcing the visibility of an object from a camera on the robot. Our proposed solution is based on the idea of adding a virtual kinematic chain connecting the physical robot and the object; the FoV constraint is then equivalent to a joint angle kinematic constraint. Along the way, we introduce multiple vision-based cost functions to fulfill different objectives. We solve this formulation of the VIK problem using a method that involves a semidefinite program (SDP) constraint followed by a rank minimization algorithm. The performance of this method for solving the VIK problem is validated through simulations.
This paper presents Neural Visibility Field (NVF), a novel uncertainty quantification method for Neural Radiance Fields (NeRF) applied to active mapping. Our key insight is that regions not visible in the training views lead to inherently unreliable color predictions by NeRF at this region, resulting in increased uncertainty in the synthesized views. To address this, we propose to use Bayesian Networks to composite position-based field uncertainty into ray-based uncertainty in camera observations. Consequently, NVF naturally assigns higher uncertainty to unobserved regions, aiding robots to select the most informative next viewpoints. Extensive evaluations show that NVF excels not only in uncertainty quantification but also in scene reconstruction for active mapping, outperforming existing methods.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.