Embedded camera systems are ubiquitous, representing the most widely deployed example of a wireless embedded system. They capture a representation of the world - the surroundings illuminated by visible or infrared light. Despite their widespread usage, the architecture of embedded camera systems has remained unchanged, which leads to limitations. They visualize only a tiny portion of the world. Additionally, they are energy-intensive, leading to limited battery lifespan. We present PixelGen, which re-imagines embedded camera systems. Specifically, PixelGen combines sensors, transceivers, and low-resolution image and infrared vision sensors to capture a broader world representation. They are deliberately chosen for their simplicity, low bitrate, and power consumption, culminating in an energy-efficient platform. We show that despite the simplicity, the captured data can be processed using transformer-based image and language models to generate novel representations of the environment. For example, we demonstrate that it can allow the generation of high-definition images, while the camera utilises low-power, low-resolution monochrome cameras. Furthermore, the capabilities of PixelGen extend beyond traditional photography, enabling visualization of phenomena invisible to conventional cameras, such as sound waves. PixelGen can enable numerous novel applications, and we demonstrate that it enables unique visualization of the surroundings that are then projected on extended reality headsets. We believe, PixelGen goes beyond conventional cameras and opens new avenues for research and photography.
Human avatar has become a novel type of 3D asset with various applications. Ideally, a human avatar should be fully customizable to accommodate different settings and environments. In this work, we introduce NECA, an approach capable of learning versatile human representation from monocular or sparse-view videos, enabling granular customization across aspects such as pose, shadow, shape, lighting and texture. The core of our approach is to represent humans in complementary dual spaces and predict disentangled neural fields of geometry, albedo, shadow, as well as an external lighting, from which we are able to derive realistic rendering with high-frequency details via volumetric rendering. Extensive experiments demonstrate the advantage of our method over the state-of-the-art methods in photorealistic rendering, as well as various editing tasks such as novel pose synthesis and relighting. The code is available at //github.com/iSEE-Laboratory/NECA.
Prototypical self-explainable classifiers have emerged to meet the growing demand for interpretable AI systems. These classifiers are designed to incorporate high transparency in their decisions by basing inference on similarity with learned prototypical objects. While these models are designed with diversity in mind, the learned prototypes often do not sufficiently represent all aspects of the input distribution, particularly those in low density regions. Such lack of sufficient data representation, known as representation bias, has been associated with various detrimental properties related to machine learning diversity and fairness. In light of this, we introduce pantypes, a new family of prototypical objects designed to capture the full diversity of the input distribution through a sparse set of objects. We show that pantypes can empower prototypical self-explainable models by occupying divergent regions of the latent space and thus fostering high diversity, interpretability and fairness.
Manual network configuration automation (NCA) tools face significant challenges in versatility and flexibility due to their reliance on extensive domain expertise and manual design, limiting their adaptability to diverse scenarios and complex application needs. This paper introduces PreConfig, an innovative NCA tool that leverages a pretrained language model for automating network configuration tasks. PreConfig is designed to address the complexity and variety of NCA tasks by framing them as text-to-text transformation problems, thus unifying the tasks of configuration generation, translation, and analysis under a single, versatile model. Our approach overcomes existing tools' limitations by utilizing advances in natural language processing to automatically comprehend and generate network configurations without extensive manual re-engineering. We confront the challenges of integrating domain-specific knowledge into pretrained models and the scarcity of supervision data in the network configuration field. Our solution involves constructing a specialized corpus and further pretraining on network configuration data, coupled with a novel data mining technique for generating task supervision data. The proposed model demonstrates robustness in configuration generation, translation, and analysis, outperforming conventional tools in handling complex networking environments. The experimental results validate the effectiveness of PreConfig, establishing a new direction for automating network configuration tasks with pretrained language models.
The development of integrated space-air-ground network (SAGIN) requires sophisticated satellite Internet emulation tools that can handle complex, dynamic topologies and offer in-depth analysis. Existing emulation platforms struggle with challenges like the need for detailed implementation across all network layers, real-time response times, and the ability to scale. Plotinus, a new digital twin system based on microservices for satellite Internet emulation, aims to solve these problems. It features a modular design, allowing for easy replacement of the physical layer to emulate different aerial vehicles and analyze channel interference. It also enables the replacement of path computation methods to simplify testing and deploying algorithms. In particular, Plotinus allows for real-time emulation with live network traffic, enhancing the realism of network models. Evaluation result shows that Plotinus's effective emulation of dynamic satellite networks with real-world devices. Its adaptability for various communication models and algorithm testing highlights Plotinus's role as a vital tool for developing and analyzing SAGIN systems, offering a scalable, real-time response, and flexible digital twin system.
Large language models (LLMs) have achieved superior performance in powering text-based AI agents, endowing them with decision-making and reasoning abilities akin to humans. Concurrently, there is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain. This extension enables AI agents to interpret and respond to diverse multimodal user queries, thereby handling more intricate and nuanced tasks. In this paper, we conduct a systematic review of LLM-driven multimodal agents, which we refer to as large multimodal agents ( LMAs for short). First, we introduce the essential components involved in developing LMAs and categorize the current body of research into four distinct types. Subsequently, we review the collaborative frameworks integrating multiple LMAs , enhancing collective efficacy. One of the critical challenges in this field is the diverse evaluation methods used across existing studies, hindering effective comparison among different LMAs . Therefore, we compile these evaluation methodologies and establish a comprehensive framework to bridge the gaps. This framework aims to standardize evaluations, facilitating more meaningful comparisons. Concluding our review, we highlight the extensive applications of LMAs and propose possible future research directions. Our discussion aims to provide valuable insights and guidelines for future research in this rapidly evolving field. An up-to-date resource list is available at //github.com/jun0wanan/awesome-large-multimodal-agents.
Graphs are widely used as a popular representation of the network structure of connected data. Graph data can be found in a broad spectrum of application domains such as social systems, ecosystems, biological networks, knowledge graphs, and information systems. With the continuous penetration of artificial intelligence technologies, graph learning (i.e., machine learning on graphs) is gaining attention from both researchers and practitioners. Graph learning proves effective for many tasks, such as classification, link prediction, and matching. Generally, graph learning methods extract relevant features of graphs by taking advantage of machine learning algorithms. In this survey, we present a comprehensive overview on the state-of-the-art of graph learning. Special attention is paid to four categories of existing graph learning methods, including graph signal processing, matrix factorization, random walk, and deep learning. Major models and algorithms under these categories are reviewed respectively. We examine graph learning applications in areas such as text, images, science, knowledge graphs, and combinatorial optimization. In addition, we discuss several promising research directions in this field.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.