In the turnstile streaming model, a dynamic vector $\mathbf{x}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)\in \mathbb{Z}^n$ is updated by a stream of entry-wise increments/decrements. Let $f\colon\mathbb{Z}\to \mathbb{R}_+$ be a symmetric function with $f(0)=0$. The \emph{$f$-moment} of $\mathbf{x}$ is defined to be $f(\mathbf{x}) := \sum_{v\in[n]}f(\mathbf{x}_v)$. We revisit the problem of constructing a \emph{universal sketch} that can estimate many different $f$-moments. Previous constructions of universal sketches rely on the technique of sampling with respect to the $L_0$-mass (uniform samples) or $L_2$-mass ($L_2$-heavy-hitters), whose universality comes from being able to evaluate the function $f$ over the samples. In this work we take a new approach to constructing a universal sketch that does not use \emph{any} explicit samples but relies on the \emph{harmonic structure} of the target function $f$. The new sketch ($\textsf{SymmetricPoissonTower}$) \emph{embraces} hash collisions instead of avoiding them, which saves multiple $\log n$ factors in space, e.g., when estimating all $L_p$-moments ($f(z) = |z|^p,p\in[0,2]$). For many nearly periodic functions, the new sketch is \emph{exponentially} more efficient than sampling-based methods. We conjecture that the $\textsf{SymmetricPoissonTower}$ sketch is \emph{the} universal sketch that can estimate every tractable function $f$.
Recent advances in GPU-based parallel simulation have enabled practitioners to collect large amounts of data and train complex control policies using deep reinforcement learning (RL), on commodity GPUs. However, such successes for RL in robotics have been limited to tasks sufficiently simulated by fast rigid-body dynamics. Simulation techniques for soft bodies are comparatively several orders of magnitude slower, thereby limiting the use of RL due to sample complexity requirements. To address this challenge, this paper presents both a novel RL algorithm and a simulation platform to enable scaling RL on tasks involving rigid bodies and deformables. We introduce Soft Analytic Policy Optimization (SAPO), a maximum entropy first-order model-based actor-critic RL algorithm, which uses first-order analytic gradients from differentiable simulation to train a stochastic actor to maximize expected return and entropy. Alongside our approach, we develop Rewarped, a parallel differentiable multiphysics simulation platform that supports simulating various materials beyond rigid bodies. We re-implement challenging manipulation and locomotion tasks in Rewarped, and show that SAPO outperforms baselines over a range of tasks that involve interaction between rigid bodies, articulations, and deformables.
When rows of an $n \times d$ matrix $A$ are given in a stream, we study algorithms for approximating the top eigenvector of the matrix ${A}^TA$ (equivalently, the top right singular vector of $A$). We consider worst case inputs $A$ but assume that the rows are presented to the streaming algorithm in a uniformly random order. We show that when the gap parameter $R = \sigma_1(A)^2/\sigma_2(A)^2 = \Omega(1)$, then there is a randomized algorithm that uses $O(h \cdot d \cdot \operatorname{polylog}(d))$ bits of space and outputs a unit vector $v$ that has a correlation $1 - O(1/\sqrt{R})$ with the top eigenvector $v_1$. Here $h$ denotes the number of \emph{heavy rows} in the matrix, defined as the rows with Euclidean norm at least $\|{A}\|_F/\sqrt{d \cdot \operatorname{polylog}(d)}$. We also provide a lower bound showing that any algorithm using $O(hd/R)$ bits of space can obtain at most $1 - \Omega(1/R^2)$ correlation with the top eigenvector. Thus, parameterizing the space complexity in terms of the number of heavy rows is necessary for high accuracy solutions. Our results improve upon the $R = \Omega(\log n \cdot \log d)$ requirement in a recent work of Price and Xun (FOCS 2024). We note that the algorithm of Price and Xun works for arbitrary order streams whereas our algorithm requires a stronger assumption that the rows are presented in a uniformly random order. We additionally show that the gap requirements in their analysis can be brought down to $R = \Omega(\log^2 d)$ for arbitrary order streams and $R = \Omega(\log d)$ for random order streams. The requirement of $R = \Omega(\log d)$ for random order streams is nearly tight for their analysis as we obtain a simple instance with $R = \Omega(\log d/\log\log d)$ for which their algorithm, with any fixed learning rate, cannot output a vector approximating the top eigenvector $v_1$.
Diffusion models, which employ stochastic differential equations to sample images through integrals, have emerged as a dominant class of generative models. However, the rationality of the diffusion process itself receives limited attention, leaving the question of whether the problem is well-posed and well-conditioned. In this paper, we explore a perplexing tendency of diffusion models: they often display the infinite Lipschitz property of the network with respect to time variable near the zero point. We provide theoretical proofs to illustrate the presence of infinite Lipschitz constants and empirical results to confirm it. The Lipschitz singularities pose a threat to the stability and accuracy during both the training and inference processes of diffusion models. Therefore, the mitigation of Lipschitz singularities holds great potential for enhancing the performance of diffusion models. To address this challenge, we propose a novel approach, dubbed E-TSDM, which alleviates the Lipschitz singularities of the diffusion model near the zero point of timesteps. Remarkably, our technique yields a substantial improvement in performance. Moreover, as a byproduct of our method, we achieve a dramatic reduction in the Fr\'echet Inception Distance of acceleration methods relying on network Lipschitz, including DDIM and DPM-Solver, by over 33%. Extensive experiments on diverse datasets validate our theory and method. Our work may advance the understanding of the general diffusion process, and also provide insights for the design of diffusion models.
We consider a distributed voting problem with a set of agents that are partitioned into disjoint groups and a set of obnoxious alternatives. Agents and alternatives are represented by points in a metric space. The goal is to compute the alternative that maximizes the total distance from all agents using a two-step mechanism which, given some information about the distances between agents and alternatives, first chooses a representative alternative for each group of agents, and then declares one of them as the overall winner. Due to the restricted nature of the mechanism and the potentially limited information it has to make its decision, it might not be always possible to choose the optimal alternative. We show tight bounds on the distortion of different mechanisms depending on the amount of the information they have access to; in particular, we study full-information and ordinal mechanisms.
We show that, for every $k\geq 2$, $C_{2k}$-freeness can be decided in $O(n^{1-1/k})$ rounds in the Broadcast CONGEST model, by a deterministic algorithm. This (deterministic) round-complexity is optimal for $k=2$ up to logarithmic factors thanks to the lower bound for $C_4$-freeness by Drucker et al. [PODC 2014], which holds even for randomized algorithms. Moreover it matches the round-complexity of the best known randomized algorithms by Censor-Hillel et al. [DISC 2020] for $k\in\{3,4,5\}$, and by Fraigniaud et al. [PODC 2024] for $k\geq 6$. Our algorithm uses parallel BFS-explorations with deterministic selections of the set of paths that are forwarded at each round, in a way similar to what is done for the detection of odd-length cycles, by Korhonen and Rybicki [OPODIS 2017]. However, the key element in the design and analysis of our algorithm is a new combinatorial result bounding the ''local density'' of graphs without $2k$-cycles, which we believe is interesting on its own.
We consider an economic environment with one buyer and one seller. For a bundle $(t,q)\in [0,\infty[\times [0,1]=\mathbb{Z}$, $q$ refers to the winning probability of an object, and $t$ denotes the payment that the buyer makes. We consider continuous and monotone preferences on $\mathbb{Z}$ as the primitives of the buyer. These preferences can incorporate both quasilinear and non-quasilinear preferences, and multidimensional pay-off relevant parameters. We define rich single-crossing subsets of this class and characterize strategy-proof mechanisms by using monotonicity of the mechanisms and continuity of the indirect preference correspondences. We also provide a computationally tractable optimization program to compute the optimal mechanism for mechanisms with finite range. We do not use revenue equivalence and virtual valuations as tools in our proofs. Our proof techniques bring out the geometric interaction between the single-crossing property and the positions of bundles $(t,q)$s in the space $\mathbb{Z}$. We also provide an extension of our analysis to an $n-$buyer environment, and to the situation where $q$ is a qualitative variable.
We study frequency domain electromagnetic scattering at a bounded, penetrable, and inhomogeneous obstacle $ \Omega \subset \mathbb{R}^3 $. From the Stratton-Chu integral representation, we derive a new representation formula when constant reference coefficients are given for the interior domain. The resulting integral representation contains the usual layer potentials, but also volume potentials on $\Omega$. Then it is possible to follow a single-trace approach to obtain boundary integral equations perturbed by traces of compact volume integral operators with weakly singular kernels. The coupled boundary and volume integral equations are discretized with a Galerkin approach with usual Curl-conforming and Div-conforming finite elements on the boundary and in the volume. Compression techniques and special quadrature rules for singular integrands are required for an efficient and accurate method. Numerical experiments provide evidence that our new formulation enjoys promising properties.
Is there a fixed dimension $n$ such that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable? Several recent results support a positive answer to this question. Greenfeld and Tao disprove the periodic tiling conjecture by showing that an aperiodic monotile exists in sufficiently high dimension $n$ [Ann. Math. 200(2024), 301-363]. In another paper [to appear in J. Eur. Math. Soc.], they also show that if the dimension $n$ is part of the input, then the translational tiling for subsets of $\mathbb{Z}^n$ with one tile is undecidable. These two results are very strong pieces of evidence for the conjecture that translational tiling of $\mathbb{Z}^n$ with a monotile is undecidable, for some fixed $n$. This paper gives another supportive result for this conjecture by showing that translational tiling of the $4$-dimensional space with a set of three connected tiles is undecidable.
This work considers the problem of output-sensitive listing of occurrences of $2k$-cycles for fixed constant $k\geq 2$ in an undirected host graph with $m$ edges and $t$ $2k$-cycles. Recent work of Jin and Xu (and independently Abboud, Khoury, Leibowitz, and Safier) [STOC 2023] gives an $O(m^{4/3}+t)$ time algorithm for listing $4$-cycles, and recent work by Jin, Vassilevska Williams and Zhou [SOSA 2024] gives an $\widetilde{O}(n^2+t)$ time algorithm for listing $6$-cycles in $n$ node graphs. We focus on resolving the next natural question: obtaining listing algorithms for $6$-cycles in the sparse setting, i.e., in terms of $m$ rather than $n$. Previously, the best known result here is the better of Jin, Vassilevska Williams and Zhou's $\widetilde{O}(n^2+t)$ algorithm and Alon, Yuster and Zwick's $O(m^{5/3}+t)$ algorithm. We give an algorithm for listing $6$-cycles with running time $\widetilde{O}(m^{1.6}+t)$. Our algorithm is a natural extension of Dahlgaard, Knudsen and St\"ockel's [STOC 2017] algorithm for detecting a $2k$-cycle. Our main technical contribution is the analysis of the algorithm which involves a type of ``supersaturation'' lemma relating the number of $2k$-cycles in a bipartite graph to the sizes of the parts in the bipartition and the number of edges. We also give a simplified analysis of Dahlgaard, Knudsen and St\"ockel's $2k$-cycle detection algorithm (with a small polylogarithmic increase in the running time), which is helpful in analyzing our listing algorithm.
Let $P$ be a set of $n$ points in $\mathbb{R}^d$, and let $\varepsilon,\psi \in (0,1)$ be parameters. Here, we consider the task of constructing a $(1+\varepsilon)$-spanner for $P$, where every edge might fail (independently) with probability $1-\psi$. For example, for $\psi=0.1$, about $90\%$ of the edges of the graph fail. Nevertheless, we show how to construct a spanner that survives such a catastrophe with near linear number of edges. The measure of reliability of the graph constructed is how many pairs of vertices lose $(1+\varepsilon)$-connectivity. Surprisingly, despite the spanner constructed being of near linear size, the number of failed pairs is close to the number of failed pairs if the underlying graph was a clique. Specifically, we show how to construct such an exact dependable spanner in one dimension of size $O(\tfrac{n}{\psi} \log n)$, which is optimal. Next, we build an $(1+\varepsilon)$-spanners for a set $P \subseteq \mathbb{R}^d$ of $n$ points, of size $O( C n \log n )$, where $C \approx 1/\bigl(\varepsilon^{d} \psi^{4/3}\bigr)$. Surprisingly, these new spanners also have the property that almost all pairs of vertices have a $\leq 4$-hop paths between them realizing this short path.