We present implicit and explicit versions of a numerical algorithm for solving a Volterra integro-differential equation. These algorithms are an extension of our previous work, and cater for a kernel of general form. We use an appropriate test equation to study the stability of both algorithms, numerically deriving stability regions. The region for the implicit method appears to be unbounded, while the explicit has a bounded region close to the origin. We perform a few calculations to demonstrate our results.
A novel overlapping domain decomposition splitting algorithm based on a Crank-Nisolson method is developed for the stochastic nonlinear Schroedinger equation driven by a multiplicative noise with non-periodic boundary conditions. The proposed algorithm can significantly reduce the computational cost while maintaining the similar conservation laws. Numerical experiments are dedicated to illustrating the capability of the algorithm for different spatial dimensions, as well as the various initial conditions. In particular, we compare the performance of the overlapping domain decomposition splitting algorithm with the stochastic multi-symplectic method in [S. Jiang, L. Wang and J. Hong, Commun. Comput. Phys., 2013] and the finite difference splitting scheme in [J. Cui, J. Hong, Z. Liu and W. Zhou, J. Differ. Equ., 2019]. We observe that our proposed algorithm has excellent computational efficiency and is highly competitive. It provides a useful tool for solving stochastic partial differential equations.
The nonlocality of the fractional operator causes numerical difficulties for long time computation of the time-fractional evolution equations. This paper develops a high-order fast time-stepping discontinuous Galerkin finite element method for the time-fractional diffusion equations, which saves storage and computational time. The optimal error estimate $O(N^{-p-1} + h^{m+1} + \varepsilon N^{r\alpha})$ of the current time-stepping discontinuous Galerkin method is rigorous proved, where $N$ denotes the number of time intervals, $p$ is the degree of polynomial approximation on each time subinterval, $h$ is the maximum space step, $r\ge1$, $m$ is the order of finite element space, and $\varepsilon>0$ can be arbitrarily small. Numerical simulations verify the theoretical analysis.
This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.
In this paper, we are concerned with symmetric integrators for the nonlinear relativistic Klein--Gordon (NRKG) equation with a dimensionless parameter $0<\varepsilon\ll 1$, which is inversely proportional to the speed of light. The highly oscillatory property in time of this model corresponds to the parameter $\varepsilon$ and the equation has strong nonlinearity when $\eps$ is small. There two aspects bring significantly numerical burdens in designing numerical methods. We propose and analyze a novel class of symmetric integrators which is based on some formulation approaches to the problem, Fourier pseudo-spectral method and exponential integrators. Two practical integrators up to order four are constructed by using the proposed symmetric property and stiff order conditions of implicit exponential integrators. The convergence of the obtained integrators is rigorously studied, and it is shown that the accuracy in time is improved to be $\mathcal{O}(\varepsilon^{3} \hh^2)$ and $\mathcal{O}(\varepsilon^{4} \hh^4)$ for the time stepsize $\hh$. The near energy conservation over long times is established for the multi-stage integrators by using modulated Fourier expansions. These theoretical results are achievable even if large stepsizes are utilized in the schemes. Numerical results on a NRKG equation show that the proposed integrators have improved uniform error bounds, excellent long time energy conservation and competitive efficiency.
We present difference schemes for stochastic transport equations with low-regularity velocity fields. We establish $L^2$ stability and convergence of the difference approximations under conditions that are less strict than those required for deterministic transport equations. The $L^2$ estimate, crucial for the analysis, is obtained through a discrete duality argument and a comprehensive examination of a class of backward parabolic difference schemes.
The analysis of a delayed generalized Burgers-Huxley equation (a non-linear advection-diffusion-reaction problem) with weakly singular kernels is carried out in this work. Moreover, numerical approximations are performed using the conforming finite element method (CFEM). The existence, uniqueness and regularity results for the continuous problem have been discussed in detail using the Faedo-Galerkin approximation technique. For the numerical studies, we first propose a semi-discrete conforming finite element scheme for space discretization and discuss its error estimates under minimal regularity assumptions. We then employ a backward Euler discretization in time and CFEM in space to obtain a fully-discrete approximation. Additionally, we derive a prior error estimates for the fully-discrete approximated solution. Finally, we present computational results that support the derived theoretical results.
We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.
We extend the error bounds from [SIMAX, Vol. 43, Iss. 2, pp. 787-811 (2022)] for the Lanczos method for matrix function approximation to the block algorithm. Numerical experiments suggest that our bounds are fairly robust to changing block size and have the potential for use as a practical stopping criteria. Further experiments work towards a better understanding of how certain hyperparameters should be chosen in order to maximize the quality of the error bounds, even in the previously studied block-size one case.
We propose and analyze a space-time virtual element method for the discretization of the heat equation in a space-time cylinder, based on a standard Petrov-Galerkin formulation. Local discrete functions are solutions to a heat equation problem with polynomial data. Global virtual element spaces are nonconforming in space, so that the analysis and the design of the method are independent of the spatial dimension. The information between time slabs is transmitted by means of upwind terms involving polynomial projections of the discrete functions. We prove well posedness and optimal error estimates for the scheme, and validate them with several numerical tests.
In this paper, efficient alternating direction implicit (ADI) schemes are proposed to solve three-dimensional heat equations with irregular boundaries and interfaces. Starting from the well-known Douglas-Gunn ADI scheme, a modified ADI scheme is constructed to mitigate the issue of accuracy loss in solving problems with time-dependent boundary conditions. The unconditional stability of the new ADI scheme is also rigorously proven with the Fourier analysis. Then, by combining the ADI schemes with a 1D kernel-free boundary integral (KFBI) method, KFBI-ADI schemes are developed to solve the heat equation with irregular boundaries. In 1D sub-problems of the KFBI-ADI schemes, the KFBI discretization takes advantage of the Cartesian grid and preserves the structure of the coefficient matrix so that the fast Thomas algorithm can be applied to solve the linear system efficiently. Second-order accuracy and unconditional stability of the KFBI-ADI schemes are verified through several numerical tests for both the heat equation and a reaction-diffusion equation. For the Stefan problem, which is a free boundary problem of the heat equation, a level set method is incorporated into the ADI method to capture the time-dependent interface. Numerical examples for simulating 3D dendritic solidification phenomenons are also presented.