亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sentiment analysis is the task of mining the authors' opinions about specific entities. It allows organizations to monitor different services in real time and act accordingly. Reputation is what is generally said or believed about people or things. Informally, reputation combines the measure of reliability derived from feedback, reviews, and ratings gathered from users, which reflect their quality of experience (QoE) and can either increase or harm the reputation of the provided services. In this study, we propose to perform sentiment analysis on web microservices reviews to exploit the provided information to assess and score the microservices' reputation. Our proposed approach uses the Long Short-Term Memory (LSTM) model to perform sentiment analysis and the Net Brand Reputation (NBR) algorithm to assess reputation scores for microservices. This approach is tested on a set of more than 10,000 reviews related to 15 Amazon Web microservices, and the experimental results have shown that our approach is more accurate than existing approaches, with an accuracy and precision of 93% obtained after applying an oversampling strategy and a resulting reputation score of the considered microservices community of 89%.

相關內容

Event logs are widely used to record the status of high-tech systems, making log anomaly detection important for monitoring those systems. Most existing log anomaly detection methods take a log event count matrix or log event sequences as input, exploiting quantitative and/or sequential relationships between log events to detect anomalies. Unfortunately, only considering quantitative or sequential relationships may result in low detection accuracy. To alleviate this problem, we propose a graph-based method for unsupervised log anomaly detection, dubbed Logs2Graphs, which first converts event logs into attributed, directed, and weighted graphs, and then leverages graph neural networks to perform graph-level anomaly detection. Specifically, we introduce One-Class Digraph Inception Convolutional Networks, abbreviated as OCDiGCN, a novel graph neural network model for detecting graph-level anomalies in a collection of attributed, directed, and weighted graphs. By coupling the graph representation and anomaly detection steps, OCDiGCN can learn a representation that is especially suited for anomaly detection, resulting in a high detection accuracy. Importantly, for each identified anomaly, we additionally provide a small subset of nodes that play a crucial role in OCDiGCN's prediction as explanations, which can offer valuable cues for subsequent root cause diagnosis. Experiments on five benchmark datasets show that Logs2Graphs performs at least on par with state-of-the-art log anomaly detection methods on simple datasets while largely outperforming state-of-the-art log anomaly detection methods on complicated datasets.

Mediation analysis is an important statistical tool in many research fields. Its aim is to investigate the mechanism along the causal pathway between an exposure and an outcome. The joint significance test is widely utilized as a prominent statistical approach for examining mediation effects in practical applications. Nevertheless, the limitation of this mediation testing method stems from its conservative Type I error, which reduces its statistical power and imposes certain constraints on its popularity and utility. The proposed solution to address this gap is the adaptive joint significance test for one mediator, a novel data-adaptive test for mediation effect that exhibits significant advancements compared to traditional joint significance test. The proposed method is designed to be user-friendly, eliminating the need for complicated procedures. We have derived explicit expressions for size and power, ensuring the theoretical validity of our approach. Furthermore, we extend the proposed adaptive joint significance tests for small-scale mediation hypotheses with family-wise error rate (FWER) control. Additionally, a novel adaptive Sobel-type approach is proposed for the estimation of confidence intervals for the mediation effects, demonstrating significant advancements over conventional Sobel's confidence intervals in terms of achieving desirable coverage probabilities. Our mediation testing and confidence intervals procedure is evaluated through comprehensive simulations, and compared with numerous existing approaches. Finally, we illustrate the usefulness of our method by analysing three real-world datasets with continuous, binary and time-to-event outcomes, respectively.

We consider ordinal online problems, i.e., tasks that only require pairwise comparisons between elements of the input. A classic example is the secretary problem and the game of googol, as well as its multiple combinatorial extensions such as $(J,K)$-secretary, $2$-sided game of googol, ordinal-competitive matroid secretary. A natural approach to these tasks is to use ordinal algorithms that at each step only consider relative ranking among the arrived elements, without looking at the numerical values of the input. We formally study the question of how cardinal algorithms can improve upon ordinal algorithms. We give first a universal construction of the input distribution for any ordinal online problem, such that the advantage of any cardinal algorithm over the ordinal algorithms is at most $1+\varepsilon$ for arbitrary small $\varepsilon> 0$. As an implication, previous lower bounds for the aforementioned variants of secretary problems hold not only against ordinal algorithms, but also against any online algorithm. However, the value range of the input elements in our construction is huge: $N=O\left(\frac{n^3\cdot n!\cdot n!}{\varepsilon}\right)\uparrow\uparrow(n-1)$ (tower of exponents) for an input sequence of length $n$. As a second result, we identify a class of natural ordinal problems and find cardinal algorithm with a matching advantage of $1+ \Omega \left(\frac{1}{\log^{(c)}N}\right),$ where $\log^{(c)}N=\log\ldots\log N$ with $c$ iterative logs and $c$ is an arbitrary constant. Further, we introduce the cardinal complexity for any given ordinal online task: the minimum size $N(\varepsilon)$ of different numerical values in the input such the advantage of cardinal over ordinal algorithms is at most $1+\varepsilon$. As a third result, we show that the game of googol has much lower cardinal complexity of $N=O\left(\left(\frac{n}{\varepsilon}\right)^n\right)$.

The proliferation of social media platforms such as Twitter, Instagram, and Weibo has significantly enhanced the dissemination of false information. This phenomenon grants both individuals and governmental entities the ability to shape public opinions, highlighting the need for deploying effective detection methods. In this paper, we propose GraMuFeN, a model designed to detect fake content by analyzing both the textual and image content of news. GraMuFeN comprises two primary components: a text encoder and an image encoder. For textual analysis, GraMuFeN treats each text as a graph and employs a Graph Convolutional Neural Network (GCN) as the text encoder. Additionally, the pre-trained ResNet-152, as a Convolutional Neural Network (CNN), has been utilized as the image encoder. By integrating the outputs from these two encoders and implementing a contrastive similarity loss function, GraMuFeN achieves remarkable results. Extensive evaluations conducted on two publicly available benchmark datasets for social media news indicate a 10 % increase in micro F1-Score, signifying improvement over existing state-of-the-art models. These findings underscore the effectiveness of combining GCN and CNN models for detecting fake news in multi-modal data, all while minimizing the additional computational burden imposed by model parameters.

Analyzing the microscopic dynamics of pushing behavior within crowds can offer valuable insights into crowd patterns and interactions. By identifying instances of pushing in crowd videos, a deeper understanding of when, where, and why such behavior occurs can be achieved. This knowledge is crucial to creating more effective crowd management strategies, optimizing crowd flow, and enhancing overall crowd experiences. However, manually identifying pushing behavior at the microscopic level is challenging, and the existing automatic approaches cannot detect such microscopic behavior. Thus, this article introduces a novel automatic framework for identifying pushing in videos of crowds on a microscopic level. The framework comprises two main components: i) Feature extraction and ii) Video labeling. In the feature extraction component, a new Voronoi-based method is developed for determining the local regions associated with each person in the input video. Subsequently, these regions are fed into EfficientNetV1B0 Convolutional Neural Network to extract the deep features of each person over time. In the second component, a combination of a fully connected layer with a Sigmoid activation function is employed to analyze these deep features and annotate the individuals involved in pushing within the video. The framework is trained and evaluated on a new dataset created using six real-world experiments, including their corresponding ground truths. The experimental findings indicate that the suggested framework outperforms seven baseline methods that are employed for comparative analysis purposes.

We consider the online planning problem for a team of agents to discover and track an unknown and time-varying number of moving objects from onboard sensor measurements with uncertain measurement-object origins. Since the onboard sensors have a limited field-of-view, the usual planning strategy based solely on either tracking detected objects or discovering unseen objects is inadequate. To address this, we formulate a new information-based multi-objective multi-agent control problem, cast as a partially observable Markov decision process (POMDP). The resulting multi-agent planning problem is exponentially complex due to the unknown data association between objects and multi-sensor measurements; hence, computing an optimal control action is intractable. We prove that the proposed multi-objective value function is a monotone submodular set function, which admits low-cost suboptimal solutions via greedy search with a tight optimality bound. The resulting planning algorithm has a linear complexity in the number of objects and measurements across the sensors, and quadratic in the number of agents. We demonstrate the proposed solution via a series of numerical experiments with a real-world dataset.

Sound-squatting is a phishing attack that tricks users into malicious resources by exploiting similarities in the pronunciation of words. Proactive defense against sound-squatting candidates is complex, and existing solutions rely on manually curated lists of homophones. We here introduce Sound-skwatter, a multi-language AI-based system that generates sound-squatting candidates for proactive defense. Sound-skwatter relies on an innovative multi-modal combination of Transformers Networks and acoustic models to learn sound similarities. We show that Sound-skwatter can automatically list known homophones and thousands of high-quality candidates. In addition, it covers cross-language sound-squatting, i.e., when the reader and the listener speak different languages, supporting any combination of languages. We apply Sound-skwatter to network-centric phishing via squatted domain names. We find ~ 10% of the generated domains exist in the wild, the vast majority unknown to protection solutions. Next, we show attacks on the PyPI package manager, where ~ 17% of the popular packages have at least one existing candidate. We believe Sound-skwatter is a crucial asset to mitigate the sound-squatting phenomenon proactively on the Internet. To increase its impact, we publish an online demo and release our models and code as open source.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司