We present As-Plausible-as-Possible (APAP) mesh deformation technique that leverages 2D diffusion priors to preserve the plausibility of a mesh under user-controlled deformation. Our framework uses per-face Jacobians to represent mesh deformations, where mesh vertex coordinates are computed via a differentiable Poisson Solve. The deformed mesh is rendered, and the resulting 2D image is used in the Score Distillation Sampling (SDS) process, which enables extracting meaningful plausibility priors from a pretrained 2D diffusion model. To better preserve the identity of the edited mesh, we fine-tune our 2D diffusion model with LoRA. Gradients extracted by SDS and a user-prescribed handle displacement are then backpropagated to the per-face Jacobians, and we use iterative gradient descent to compute the final deformation that balances between the user edit and the output plausibility. We evaluate our method with 2D and 3D meshes and demonstrate qualitative and quantitative improvements when using plausibility priors over geometry-preservation or distortion-minimization priors used by previous techniques.
Community Search (CS) aims to identify densely interconnected subgraphs corresponding to query vertices within a graph. However, existing heterogeneous graph-based community search methods need help identifying cross-group communities and suffer from efficiency issues, making them unsuitable for large graphs. This paper presents a fast community search model based on the Butterfly-Core Community (BCC) structure for heterogeneous graphs. The Random Walk with Restart (RWR) algorithm and butterfly degree comprehensively evaluate the importance of vertices within communities, allowing leader vertices to be rapidly updated to maintain cross-group cohesion. Moreover, we devised a more efficient method for updating vertex distances, which minimizes vertex visits and enhances operational efficiency. Extensive experiments on several real-world temporal graphs demonstrate the effectiveness and efficiency of this solution.
Generative Retrieval (GR), autoregressively decoding relevant document identifiers given a query, has been shown to perform well under the setting of small-scale corpora. By memorizing the document corpus with model parameters, GR implicitly achieves deep interaction between query and document. However, such a memorizing mechanism faces three drawbacks: (1) Poor memory accuracy for fine-grained features of documents; (2) Memory confusion gets worse as the corpus size increases; (3) Huge memory update costs for new documents. To alleviate these problems, we propose the Generative Dense Retrieval (GDR) paradigm. Specifically, GDR first uses the limited memory volume to achieve inter-cluster matching from query to relevant document clusters. Memorizing-free matching mechanism from Dense Retrieval (DR) is then introduced to conduct fine-grained intra-cluster matching from clusters to relevant documents. The coarse-to-fine process maximizes the advantages of GR's deep interaction and DR's scalability. Besides, we design a cluster identifier constructing strategy to facilitate corpus memory and a cluster-adaptive negative sampling strategy to enhance the intra-cluster mapping ability. Empirical results show that GDR obtains an average of 3.0 R@100 improvement on NQ dataset under multiple settings and has better scalability.
End-to-end (E2E) automatic speech recognition (ASR) methods exhibit remarkable performance. However, since the performance of such methods is intrinsically linked to the context present in the training data, E2E-ASR methods do not perform as desired for unseen user contexts (e.g., technical terms, personal names, and playlists). Thus, E2E-ASR methods must be easily contextualized by the user or developer. This paper proposes an attention-based contextual biasing method that can be customized using an editable phrase list (referred to as a bias list). The proposed method can be trained effectively by combining a bias phrase index loss and special tokens to detect the bias phrases in the input speech data. In addition, to improve the contextualization performance during inference further, we propose a bias phrase boosted (BPB) beam search algorithm based on the bias phrase index probability. Experimental results demonstrate that the proposed method consistently improves the word error rate and the character error rate of the target phrases in the bias list on both the Librispeech-960 (English) and our in-house (Japanese) dataset, respectively.
This paper introduces the batch-parallel Compressed Packed Memory Array (CPMA), a compressed, dynamic, ordered set data structure based on the Packed Memory Array (PMA). Traditionally, batch-parallel sets are built on pointer-based data structures such as trees because pointer-based structures enable fast parallel unions via pointer manipulation. When compared with cache-optimized trees, PMAs were slower to update but faster to scan. he batch-parallel CPMA overcomes this tradeoff between updates and scans by optimizing for cache-friendliness. On average, the CPMA achieves 3x faster batch-insert throughput and 4x faster range-query throughput compared with compressed PaC-trees, a state-of-the-art batch-parallel set library based on cache-optimized trees. We further evaluate the CPMA compared with compressed PaC-trees and Aspen, a state-of-the-art system, on a real-world application of dynamic-graph processing. The CPMA is on average 1.2x faster on a suite of graph algorithms and 2x faster on batch inserts when compared with compressed PaC-trees. Furthermore, the CPMA is on average 1.3x faster on graph algorithms and 2x faster on batch inserts compared with Aspen.
Recent strides in the field of neural computation has seen the adoption of Winner Take All (WTA) circuits to facilitate the unification of hierarchical Bayesian inference and spiking neural networks as a neurobiologically plausible model of information processing. Current research commonly validates the performance of these networks via classification tasks, particularly of the MNIST dataset. However, researchers have not yet reached consensus about how best to translate the stochastic responses from these networks into discrete decisions, a process known as population decoding. Despite being an often underexamined part of SNNs, in this work we show that population decoding has a significanct impact on the classification performance of WTA networks. For this purpose, we apply a WTA network to the problem of cancer subtype diagnosis from multi omic data, using datasets from The Cancer Genome Atlas (TCGA). In doing so we utilise a novel implementation of gene similarity networks, a feature encoding technique based on Kohoens self organising map algorithm. We further show that the impact of selecting certain population decoding methods is amplified when facing imbalanced datasets.
With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.