We study the use of the Euler characteristic for multiparameter topological data analysis. Euler characteristic is a classical, well-understood topological invariant that has appeared in numerous applications, including in the context of random fields. The goal of this paper is to present the extension of using the Euler characteristic in higher-dimensional parameter spaces. While topological data analysis of higher-dimensional parameter spaces using stronger invariants such as homology continues to be the subject of intense research, Euler characteristic is more manageable theoretically and computationally, and this analysis can be seen as an important intermediary step in multi-parameter topological data analysis. We show the usefulness of the techniques using artificially generated examples, and a real-world application of detecting diabetic retinopathy in retinal images.
This paper describes an algorithm which computes the characteristic polynomial of a matrix over a field within the same asymptotic complexity, up to constant factors, as the multiplication of two square matrices. Previously, this was only achieved by resorting to genericity assumptions or randomization techniques, while the best known complexity bound with a general deterministic algorithm was obtained by Keller-Gehrig in 1985 and involves logarithmic factors. Our algorithm computes more generally the determinant of a univariate polynomial matrix in reduced form, and relies on new subroutines for transforming shifted reduced matrices into shifted weak Popov matrices, and shifted weak Popov matrices into shifted Popov matrices.
In this article we construct a compact Riemannian manifold of high dimension on which the time dependent Euler equations are Turing complete. More precisely, the halting of any Turing machine with a given input is equivalent to a certain global solution of the Euler equations entering a certain open set in the space of divergence-free vector fields. In particular, this implies the undecidability of whether a solution to the Euler equations with an initial datum will reach a certain open set or not in the space of divergence-free fields. This result goes one step further in Tao's programme to study the blow-up problem for the Euler and Navier-Stokes equations using fluid computers. As a remarkable spin-off, our method of proof allows us to give a counterexample to a conjecture of Moore dating back to 1998 on the non-existence of analytic maps on compact manifolds that are Turing complete.
In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic. All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of quantitative simulation.
Regression models that ignore measurement error in predictors may produce highly biased estimates leading to erroneous inferences. It is well known that it is extremely difficult to take measurement error into account in Gaussian nonparametric regression. This problem becomes tremendously more difficult when considering other families such as logistic regression, Poisson and negative-binomial. For the first time, we present a method aiming to correct for measurement error when estimating regression functions flexibly covering virtually all distributions and link functions regularly considered in generalized linear models. This approach depends on approximating the first and the second moment of the response after integrating out the true unobserved predictors in a semiparametric generalized linear model. Unlike previous methods, this method is not restricted to truncated splines and can utilize various basis functions. Through extensive simulation studies, we study the performance of our method under many scenarios.
For probabilistic programs, it is usually not possible to automatically derive exact information about their properties, such as the distribution of states at a given program point. Instead, one can attempt to derive approximations, such as upper bounds on tail probabilities. Such bounds can be obtained via concentration inequalities, which rely on the moments of a distribution, such as the expectation (the first raw moment) or the variance (the second central moment). Tail bounds obtained using central moments are often tighter than the ones obtained using raw moments, but automatically analyzing central moments is more challenging. This paper presents an analysis for probabilistic programs that automatically derives symbolic upper and lower bounds on variances, as well as higher central moments, of cost accumulators. To overcome the challenges of higher-moment analysis, it generalizes analyses for expectations with an algebraic abstraction that simultaneously analyzes different moments, utilizing relations between them. A key innovation is the notion of moment-polymorphic recursion, and a practical derivation system that handles recursive functions. The analysis has been implemented using a template-based technique that reduces the inference of polynomial bounds to linear programming. Experiments with our prototype central-moment analyzer show that, despite the analyzer's upper/lower bounds on various quantities, it obtains tighter tail bounds than an existing system that uses only raw moments, such as expectations.
In practice, the problems encountered in training NAS (Neural Architecture Search) are not simplex, but a series of combinations of difficulties are often faced(incorrect compensation estimation, curse of dimension, overfitting, high complexity, etc.). From the point of view for solving practical problems, this paper makes reference and improvement to the previous researches which only solve the single problem of NAS, and combines them into a practical technology flow. This paper propose a framework that decouples the network structure from the search space for operators. We use two BOHBs(Bayesian Optimization Hyperband) to search alternately in the vast network structure and operator search space. And then, we trained a GCN-baesd predictor using the feedback of the child model. This approach takes care of the dimension curse while improving efficiency. Considering that activation function and initialization are also important components of neural network, and can affect the generalization ability of the model. This paper introduced an activation function and an initialization method domain, join them to the operator search space to form a generalized search space, thus improving the generalization ability of the child model. At last, We applied our framework to neural architecture search and achieved significant improvements on multiple datasets.
Fast and high-order accurate algorithms for three dimensional elastic scattering are of great importance when modeling physical phenomena in mechanics, seismic imaging, and many other fields of applied science. In this paper, we develop a novel boundary integral formulation for the three dimensional elastic scattering based on the Helmholtz decomposition of elastic fields, which converts the Navier equation to a coupled system consisted of Helmholtz and Maxwell equations. An FFT-accelerated separation of variables solver is proposed to efficiently invert boundary integral formulations of the coupled system for elastic scattering from axisymmetric rigid bodies. In particular, by combining the regularization properties of the singular boundary integral operators and the FFT-based fast evaluation of modal Green's functions, our numerical solver can rapidly solve the resulting integral equations with a high-order accuracy. Several numerical examples are provided to demonstrate the efficiency and accuracy of the proposed algorithm, including geometries with corners at different wave number.
In computer-aided design (CAD), the ability to "reverse engineer" the modeling steps used to create 3D shapes is a long-sought-after goal. This process can be decomposed into two sub-problems: converting an input mesh or point cloud into a boundary representation (or B-rep), and then inferring modeling operations which construct this B-rep. In this paper, we present a new system for solving the second sub-problem. Central to our approach is a new geometric representation: the zone graph. Zones are the set of solid regions formed by extending all B-Rep faces and partitioning space with them; a zone graph has these zones as its nodes, with edges denoting geometric adjacencies between them. Zone graphs allow us to tractably work with industry-standard CAD operations, unlike prior work using CSG with parametric primitives. We focus on CAD programs consisting of sketch + extrude + Boolean operations, which are common in CAD practice. We phrase our problem as search in the space of such extrusions permitted by the zone graph, and we train a graph neural network to score potential extrusions in order to accelerate the search. We show that our approach outperforms an existing CSG inference baseline in terms of geometric reconstruction accuracy and reconstruction time, while also creating more plausible modeling sequences.
Graph neural networks (GNN) has been successfully applied to operate on the graph-structured data. Given a specific scenario, rich human expertise and tremendous laborious trials are usually required to identify a suitable GNN architecture. It is because the performance of a GNN architecture is significantly affected by the choice of graph convolution components, such as aggregate function and hidden dimension. Neural architecture search (NAS) has shown its potential in discovering effective deep architectures for learning tasks in image and language modeling. However, existing NAS algorithms cannot be directly applied to the GNN search problem. First, the search space of GNN is different from the ones in existing NAS work. Second, the representation learning capacity of GNN architecture changes obviously with slight architecture modifications. It affects the search efficiency of traditional search methods. Third, widely used techniques in NAS such as parameter sharing might become unstable in GNN. To bridge the gap, we propose the automated graph neural networks (AGNN) framework, which aims to find an optimal GNN architecture within a predefined search space. A reinforcement learning based controller is designed to greedily validate architectures via small steps. AGNN has a novel parameter sharing strategy that enables homogeneous architectures to share parameters, based on a carefully-designed homogeneity definition. Experiments on real-world benchmark datasets demonstrate that the GNN architecture identified by AGNN achieves the best performance, comparing with existing handcrafted models and tradistional search methods.
While Generative Adversarial Networks (GANs) have empirically produced impressive results on learning complex real-world distributions, recent work has shown that they suffer from lack of diversity or mode collapse. The theoretical work of Arora et al.~\cite{AroraGeLiMaZh17} suggests a dilemma about GANs' statistical properties: powerful discriminators cause overfitting, whereas weak discriminators cannot detect mode collapse. In contrast, we show in this paper that GANs can in principle learn distributions in Wasserstein distance (or KL-divergence in many cases) with polynomial sample complexity, if the discriminator class has strong distinguishing power against the particular generator class (instead of against all possible generators). For various generator classes such as mixture of Gaussians, exponential families, and invertible neural networks generators, we design corresponding discriminators (which are often neural nets of specific architectures) such that the Integral Probability Metric (IPM) induced by the discriminators can provably approximate the Wasserstein distance and/or KL-divergence. This implies that if the training is successful, then the learned distribution is close to the true distribution in Wasserstein distance or KL divergence, and thus cannot drop modes. Our preliminary experiments show that on synthetic datasets the test IPM is well correlated with KL divergence, indicating that the lack of diversity may be caused by the sub-optimality in optimization instead of statistical inefficiency.