Federated learning (FL) is vulnerable to poisoning attacks, where adversaries corrupt the global aggregation results and cause denial-of-service (DoS). Unlike recent model poisoning attacks that optimize the amplitude of malicious perturbations along certain prescribed directions to cause DoS, we propose a Flexible Model Poisoning Attack (FMPA) that can achieve versatile attack goals. We consider a practical threat scenario where no extra knowledge about the FL system (e.g., aggregation rules or updates on benign devices) is available to adversaries. FMPA exploits the global historical information to construct an estimator that predicts the next round of the global model as a benign reference. It then fine-tunes the reference model to obtain the desired poisoned model with low accuracy and small perturbations. Besides the goal of causing DoS, FMPA can be naturally extended to launch a fine-grained controllable attack, making it possible to precisely reduce the global accuracy. Armed with precise control, malicious FL service providers can gain advantages over their competitors without getting noticed, hence opening a new attack surface in FL other than DoS. Even for the purpose of DoS, experiments show that FMPA significantly decreases the global accuracy, outperforming six state-of-the-art attacks.The code can be found at //github.com/ZhangHangTao/Poisoning-Attack-on-FL.
The surveillance of a pandemic is a challenging task, especially when crucial data is distributed and stakeholders cannot or are unwilling to share. To overcome this obstacle, federated methodologies should be developed to incorporate less sensitive evidence that entities are willing to provide. This study aims to explore the feasibility of pushing hypothesis tests behind each custodian's firewall and then meta-analysis to combine the results, and to determine the optimal approach for reconstructing the hypothesis test and optimizing the inference. We propose a hypothesis testing framework to identify a surge in the indicators and conduct power analyses and experiments on real and semi-synthetic data to showcase the properties of our proposed hypothesis test and suggest suitable methods for combining $p$-values. Our findings highlight the potential of using $p$-value combination as a federated methodology for pandemic surveillance and provide valuable insights into integrating available data sources.
People with visual impairments face numerous challenges when interacting with their environment. Our objective is to develop a device that facilitates communication between individuals with visual impairments and their surroundings. The device will convert visual information into auditory feedback, enabling users to understand their environment in a way that suits their sensory needs. Initially, an object detection model is selected from existing machine learning models based on its accuracy and cost considerations, including time and power consumption. The chosen model is then implemented on a Raspberry Pi, which is connected to a specifically designed tactile device. When the device is touched at a specific position, it provides an audio signal that communicates the identification of the object present in the scene at that corresponding position to the visually impaired individual. Conducted tests have demonstrated the effectiveness of this device in scene understanding, encompassing static or dynamic objects, as well as screen contents such as TVs, computers, and mobile phones.
Traditional Federated Learning (FL) follows a server-domincated cooperation paradigm which narrows the application scenarios of FL and decreases the enthusiasm of data holders to participate. To fully unleash the potential of FL, we advocate rethinking the design of current FL frameworks and extending it to a more generalized concept: Open Federated Learning Platforms. We propose two reciprocal cooperation frameworks for FL to achieve this: query-based FL and contract-based FL. In this survey, we conduct a comprehensive review of the feasibility of constructing an open FL platform from both technical and legal perspectives. We begin by reviewing the definition of FL and summarizing its inherent limitations, including server-client coupling, low model reusability, and non-public. In the query-based FL platform, which is an open model sharing and reusing platform empowered by the community for model mining, we explore a wide range of valuable topics, including the availability of up-to-date model repositories for model querying, legal compliance analysis between different model licenses, and copyright issues and intellectual property protection in model reusing. In particular, we introduce a novel taxonomy to streamline the analysis of model license compatibility in FL studies that involve batch model reusing methods, including combination, amalgamation, distillation, and generation. This taxonomy provides a systematic framework for identifying the corresponding clauses of licenses and facilitates the identification of potential legal implications and restrictions when reusing models. Through this survey, we uncover the the current dilemmas faced by FL and advocate for the development of sustainable open FL platforms. We aim to provide guidance for establishing such platforms in the future, while identifying potential problems and challenges that need to be addressed.
Federated online learning to rank (FOLTR) aims to preserve user privacy by not sharing their searchable data and search interactions, while guaranteeing high search effectiveness, especially in contexts where individual users have scarce training data and interactions. For this, FOLTR trains learning to rank models in an online manner -- i.e. by exploiting users' interactions with the search systems (queries, clicks), rather than labels -- and federatively -- i.e. by not aggregating interaction data in a central server for training purposes, but by training instances of a model on each user device on their own private data, and then sharing the model updates, not the data, across a set of users that have formed the federation. Existing FOLTR methods build upon advances in federated learning. While federated learning methods have been shown effective at training machine learning models in a distributed way without the need of data sharing, they can be susceptible to attacks that target either the system's security or its overall effectiveness. In this paper, we consider attacks on FOLTR systems that aim to compromise their search effectiveness. Within this scope, we experiment with and analyse data and model poisoning attack methods to showcase their impact on FOLTR search effectiveness. We also explore the effectiveness of defense methods designed to counteract attacks on FOLTR systems. We contribute an understanding of the effect of attack and defense methods for FOLTR systems, as well as identifying the key factors influencing their effectiveness.
Undoubtedly, the evolution of Generative AI (GenAI) models has been the highlight of digital transformation in the year 2022. As the different GenAI models like ChatGPT and Google Bard continue to foster their complexity and capability, it's critical to understand its consequences from a cybersecurity perspective. Several instances recently have demonstrated the use of GenAI tools in both the defensive and offensive side of cybersecurity, and focusing on the social, ethical and privacy implications this technology possesses. This research paper highlights the limitations, challenges, potential risks, and opportunities of GenAI in the domain of cybersecurity and privacy. The work presents the vulnerabilities of ChatGPT, which can be exploited by malicious users to exfiltrate malicious information bypassing the ethical constraints on the model. This paper demonstrates successful example attacks like Jailbreaks, reverse psychology, and prompt injection attacks on the ChatGPT. The paper also investigates how cyber offenders can use the GenAI tools in developing cyber attacks, and explore the scenarios where ChatGPT can be used by adversaries to create social engineering attacks, phishing attacks, automated hacking, attack payload generation, malware creation, and polymorphic malware. This paper then examines defense techniques and uses GenAI tools to improve security measures, including cyber defense automation, reporting, threat intelligence, secure code generation and detection, attack identification, developing ethical guidelines, incidence response plans, and malware detection. We will also discuss the social, legal, and ethical implications of ChatGPT. In conclusion, the paper highlights open challenges and future directions to make this GenAI secure, safe, trustworthy, and ethical as the community understands its cybersecurity impacts.
Deep neural networks (DNNs) have been showed to be highly vulnerable to imperceptible adversarial perturbations. As a complementary type of adversary, patch attacks that introduce perceptible perturbations to the images have attracted the interest of researchers. Existing patch attacks rely on the architecture of the model or the probabilities of predictions and perform poorly in the decision-based setting, which can still construct a perturbation with the minimal information exposed -- the top-1 predicted label. In this work, we first explore the decision-based patch attack. To enhance the attack efficiency, we model the patches using paired key-points and use targeted images as the initialization of patches, and parameter optimizations are all performed on the integer domain. Then, we propose a differential evolutionary algorithm named DevoPatch for query-efficient decision-based patch attacks. Experiments demonstrate that DevoPatch outperforms the state-of-the-art black-box patch attacks in terms of patch area and attack success rate within a given query budget on image classification and face verification. Additionally, we conduct the vulnerability evaluation of ViT and MLP on image classification in the decision-based patch attack setting for the first time. Using DevoPatch, we can evaluate the robustness of models to black-box patch attacks. We believe this method could inspire the design and deployment of robust vision models based on various DNN architectures in the future.
Federated learning (FL) enables multiple clients to collaboratively train deep learning models while considering sensitive local datasets' privacy. However, adversaries can manipulate datasets and upload models by injecting triggers for federated backdoor attacks (FBA). Existing defense strategies against FBA consider specific and limited attacker models, and a sufficient amount of noise to be injected only mitigates rather than eliminates FBA. To address these deficiencies, we introduce a Flexible Federated Backdoor Defense Framework (Fedward) to ensure the elimination of adversarial backdoors. We decompose FBA into various attacks, and design amplified magnitude sparsification (AmGrad) and adaptive OPTICS clustering (AutoOPTICS) to address each attack. Meanwhile, Fedward uses the adaptive clipping method by regarding the number of samples in the benign group as constraints on the boundary. This ensures that Fedward can maintain the performance for the Non-IID scenario. We conduct experimental evaluations over three benchmark datasets and thoroughly compare them to state-of-the-art studies. The results demonstrate the promising defense performance from Fedward, moderately improved by 33% $\sim$ 75 in clustering defense methods, and 96.98%, 90.74%, and 89.8% for Non-IID to the utmost extent for the average FBA success rate over MNIST, FMNIST, and CIFAR10, respectively.
Federated learning (FL) has been proposed to protect data privacy and virtually assemble the isolated data silos by cooperatively training models among organizations without breaching privacy and security. However, FL faces heterogeneity from various aspects, including data space, statistical, and system heterogeneity. For example, collaborative organizations without conflict of interest often come from different areas and have heterogeneous data from different feature spaces. Participants may also want to train heterogeneous personalized local models due to non-IID and imbalanced data distribution and various resource-constrained devices. Therefore, heterogeneous FL is proposed to address the problem of heterogeneity in FL. In this survey, we comprehensively investigate the domain of heterogeneous FL in terms of data space, statistical, system, and model heterogeneity. We first give an overview of FL, including its definition and categorization. Then, We propose a precise taxonomy of heterogeneous FL settings for each type of heterogeneity according to the problem setting and learning objective. We also investigate the transfer learning methodologies to tackle the heterogeneity in FL. We further present the applications of heterogeneous FL. Finally, we highlight the challenges and opportunities and envision promising future research directions toward new framework design and trustworthy approaches.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.