We propose to use L\'evy {\alpha}-stable distributions for constructing priors for Bayesian inverse problems. The construction is based on Markov fields with stable-distributed increments. Special cases include the Cauchy and Gaussian distributions, with stability indices {\alpha} = 1, and {\alpha} = 2, respectively. Our target is to show that these priors provide a rich class of priors for modelling rough features. The main technical issue is that the {\alpha}-stable probability density functions do not have closed-form expressions in general, and this limits their applicability. For practical purposes, we need to approximate probability density functions through numerical integration or series expansions. Current available approximation methods are either too time-consuming or do not function within the range of stability and radius arguments needed in Bayesian inversion. To address the issue, we propose a new hybrid approximation method for symmetric univariate and bivariate {\alpha}-stable distributions, which is both fast to evaluate, and accurate enough from a practical viewpoint. Then we use approximation method in the numerical implementation of {\alpha}-stable random field priors. We demonstrate the applicability of the constructed priors on selected Bayesian inverse problems which include the deconvolution problem, and the inversion of a function governed by an elliptic partial differential equation. We also demonstrate hierarchical {\alpha}-stable priors in the one-dimensional deconvolution problem. We employ maximum-a-posterior-based estimation at all the numerical examples. To that end, we exploit the limited-memory BFGS and its bounded variant for the estimator.
We analyze the convergence of a nonlocal gradient descent method for minimizing a class of high-dimensional non-convex functions, where a directional Gaussian smoothing (DGS) is proposed to define the nonlocal gradient (also referred to as the DGS gradient). The method was first proposed in [42], in which multiple numerical experiments showed that replacing the traditional local gradient with the DGS gradient can help the optimizers escape local minima more easily and significantly improve their performance. However, a rigorous theory for the efficiency of the method on nonconvex landscape is lacking. In this work, we investigate the scenario where the objective function is composed of a convex function, perturbed by a oscillating noise. We provide a convergence theory under which the iterates exponentially converge to a tightened neighborhood of the solution, whose size is characterized by the noise wavelength. We also establish a correlation between the optimal values of the Gaussian smoothing radius and the noise wavelength, thus justify the advantage of using moderate or large smoothing radius with the method. Furthermore, if the noise level decays to zero when approaching global minimum, we prove that DGS-based optimization converges to the exact global minimum with linear rates, similarly to standard gradient-based method in optimizing convex functions. Several numerical experiments are provided to confirm our theory and illustrate the superiority of the approach over those based on the local gradient.
We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier--Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretised in conforming spaces, whose the compatibility is ensured by the existence of an interpolator for regular functions which preserves approximate divergence free properties. Owing to a priori estimates, we get the existence and uniqueness of the discrete approximation. Compactness properties are then proved, relying on a Lions-like lemma for time translate estimates. It is then possible to show the convergence of the approximate solution to a weak solution of the problem. The construction of the interpolator is detailed in the case of the lowest degree Taylor-Hood finite element.
We provide a general solution to a fundamental open problem in Bayesian inference, namely poor uncertainty quantification, from a frequency standpoint, of Bayesian methods in misspecified models. While existing solutions are based on explicit Gaussian approximations of the posterior, or computationally onerous post-processing procedures, we demonstrate that correct uncertainty quantification can be achieved by replacing the usual posterior with an intuitive approximate posterior. Critically, our solution is applicable to likelihood-based, and generalized, posteriors as well as cases where the likelihood is intractable and must be estimated. We formally demonstrate the reliable uncertainty quantification of our proposed approach, and show that valid uncertainty quantification is not an asymptotic result but occurs even in small samples. We illustrate this approach through a range of examples, including linear, and generalized, mixed effects models.
A wide spectrum of design and decision problems, including parameter tuning, A/B testing and drug design, intrinsically are instances of black-box optimization. Bayesian optimization (BO) is a powerful tool that models and optimizes such expensive "black-box" functions. However, at the beginning of optimization, vanilla Bayesian optimization methods often suffer from slow convergence issue due to inaccurate modeling based on few trials. To address this issue, researchers in the BO community propose to incorporate the spirit of transfer learning to accelerate optimization process, which could borrow strength from the past tasks (source tasks) to accelerate the current optimization problem (target task). This survey paper first summarizes transfer learning methods for Bayesian optimization from four perspectives: initial points design, search space design, surrogate model, and acquisition function. Then it highlights its methodological aspects and technical details for each approach. Finally, it showcases a wide range of applications and proposes promising future directions.
Composition theorems are general and powerful tools that facilitate privacy accounting across multiple data accesses from per-access privacy bounds. However they often result in weaker bounds compared with end-to-end analysis. Two popular tools that mitigate that are the exponential mechanism (or report noisy max) and the sparse vector technique. They were generalized in a couple of recent private selection/test frameworks, including the work by Liu and Talwar (STOC 2019), and Papernot and Steinke (ICLR 2022). In this work, we first present an alternative framework for private selection and testing with a simpler privacy proof and equally-good utility guarantee. Second, we observe that the private selection framework (both previous ones and ours) can be applied to improve the accuracy/confidence trade-off for many fundamental privacy-preserving data-analysis tasks, including query releasing, top-$k$ selection, and stable selection. Finally, for online settings, we apply the private testing to design a mechanism for adaptive query releasing, which improves the sample complexity dependence on the confidence parameter for the celebrated private multiplicative weights algorithm of Hardt and Rothblum (FOCS 2010).
We present an efficient semiparametric variational method to approximate the Gibbs posterior distribution of Bayesian regression models, which predict the data through a linear combination of the available covariates. Remarkable cases are generalized linear mixed models, support vector machines, quantile and expectile regression. The variational optimization algorithm we propose only involves the calculation of univariate numerical integrals, when no analytic solutions are available. Neither differentiability, nor conjugacy, nor elaborate data-augmentation strategies are required. Several generalizations of the proposed approach are discussed in order to account for additive models, shrinkage priors, dynamic and spatial models, providing a unifying framework for statistical learning that cover a wide range of applications. The properties of our semiparametric variational approximation are then assessed through a theoretical analysis and an extensive simulation study, in which we compare our proposal with Markov chain Monte Carlo, conjugate mean field variational Bayes and Laplace approximation in terms of signal reconstruction, posterior approximation accuracy and execution time. A real data example is then presented through a probabilistic load forecasting application on the US power load consumption data.
In the last two decades, Bayesian inference has become commonplace in astronomy. At the same time, the choice of algorithms, terminology, notation, and interpretation of Bayesian inference varies from one sub-field of astronomy to the next, which can lead to confusion to both those learning and those familiar with Bayesian statistics. Moreover, the choice varies between the astronomy and statistics literature, too. In this paper, our goal is two-fold: (1) provide a reference that consolidates and clarifies terminology and notation across disciplines, and (2) outline practical guidance for Bayesian inference in astronomy. Highlighting both the astronomy and statistics literature, we cover topics such as notation, specification of the likelihood and prior distributions, inference using the posterior distribution, and posterior predictive checking. It is not our intention to introduce the entire field of Bayesian data analysis -- rather, we present a series of useful practices for astronomers who already have an understanding of the Bayesian "nuts and bolts" and wish to increase their expertise and extend their knowledge. Moreover, as the field of astrostatistics and astroinformatics continues to grow, we hope this paper will serve as both a helpful reference and as a jumping off point for deeper dives into the statistics and astrostatistics literature.
A large number of modern applications ranging from listening songs online and browsing the Web to using a navigation app on a smartphone generate a plethora of user trails. Clustering such trails into groups with a common sequence pattern can reveal significant structure in human behavior that can lead to improving user experience through better recommendations, and even prevent suicides [LMCR14]. One approach to modeling this problem mathematically is as a mixture of Markov chains. Recently, Gupta, Kumar and Vassilvitski [GKV16] introduced an algorithm (GKV-SVD) based on the singular value decomposition (SVD) that under certain conditions can perfectly recover a mixture of L chains on n states, given only the distribution of trails of length 3 (3-trail). In this work we contribute to the problem of unmixing Markov chains by highlighting and addressing two important constraints of the GKV-SVD algorithm [GKV16]: some chains in the mixture may not even be weakly connected, and secondly in practice one does not know beforehand the true number of chains. We resolve these issues in the Gupta et al. paper [GKV16]. Specifically, we propose an algebraic criterion that enables us to choose a value of L efficiently that avoids overfitting. Furthermore, we design a reconstruction algorithm that outputs the true mixture in the presence of disconnected chains and is robust to noise. We complement our theoretical results with experiments on both synthetic and real data, where we observe that our method outperforms the GKV-SVD algorithm. Finally, we empirically observe that combining an EM-algorithm with our method performs best in practice, both in terms of reconstruction error with respect to the distribution of 3-trails and the mixture of Markov Chains.
Bayesian posterior distributions arising in modern applications, including inverse problems in partial differential equation models in tomography and subsurface flow, are often computationally intractable due to the large computational cost of evaluating the data likelihood. To alleviate this problem, we consider using Gaussian process regression to build a surrogate model for the likelihood, resulting in an approximate posterior distribution that is amenable to computations in practice. This work serves as an introduction to Gaussian process regression, in particular in the context of building surrogate models for inverse problems, and presents new insights into a suitable choice of training points. We show that the error between the true and approximate posterior distribution can be bounded by the error between the true and approximate likelihood, measured in the $L^2$-norm weighted by the true posterior, and that efficiently bounding the error between the true and approximate likelihood in this norm suggests choosing the training points in the Gaussian process surrogate model based on the true posterior.
We consider the differentially private estimation of multiple quantiles (MQ) of a distribution from a dataset, a key building block in modern data analysis. We apply the recent non-smoothed Inverse Sensitivity (IS) mechanism to this specific problem. We establish that the resulting method is closely related to the recently published ad hoc algorithm JointExp. In particular, they share the same computational complexity and a similar efficiency. We prove the statistical consistency of these two algorithms for continuous distributions. Furthermore, we demonstrate both theoretically and empirically that this method suffers from an important lack of performance in the case of peaked distributions, which can degrade up to a potentially catastrophic impact in the presence of atoms. Its smoothed version (i.e. by applying a max kernel to its output density) would solve this problem, but remains an open challenge to implement. As a proxy, we propose a simple and numerically efficient method called Heuristically Smoothed JointExp (HSJointExp), which is endowed with performance guarantees for a broad class of distributions and achieves results that are orders of magnitude better on problematic datasets.