We consider the case where an adversary is conducting a surveillance campaign against a networked control system (NCS), and take the perspective of a defender/control system operator who has successfully isolated the cyber intruder. To better understand the adversary's intentions and to drive up their operating costs, the defender directs the adversary towards a ``honeypot" that emulates a real control system and without actual connections to a physical plant. We propose a strategy for adversary engagement within the ``honey" control system to increase the adversary's costs of information processing. We assume that, based on an understanding of the adversary's control theoretic goals, cyber threat intelligence (CTI) provides the defender knowledge of the adversary's preferences for information acquisition. We use this knowledge to spoof sensor readings to maximize the amount of information the adversary consumes while making it (information theoretically) difficult for the adversary to detect that they are being spoofed. We discuss the case of imperfect versus perfect threat intelligence and perform a numerical comparison.
Understanding adversarial examples is crucial for improving the model's robustness, as they introduce imperceptible perturbations that deceive models. Effective adversarial examples, therefore, offer the potential to train more robust models by removing their singularities. We propose NODE-AdvGAN, a novel approach that treats adversarial generation as a continuous process and employs a Neural Ordinary Differential Equation (NODE) for simulating the dynamics of the generator. By mimicking the iterative nature of traditional gradient-based methods, NODE-AdvGAN generates smoother and more precise perturbations that preserve high perceptual similarity when added to benign images. We also propose a new training strategy, NODE-AdvGAN-T, which enhances transferability in black-box attacks by effectively tuning noise parameters during training. Experiments demonstrate that NODE-AdvGAN and NODE-AdvGAN-T generate more effective adversarial examples that achieve higher attack success rates while preserving better perceptual quality than traditional GAN-based methods.
We propose two methods for the unsupervised detection of communities in undirected multiplex networks. These networks consist of multiple layers that record different relationships between the same entities or incorporate data from different sources. Both methods are formulated as gradient flows of suitable energy functionals: the first (MPBTV) builds on the minimization of a balanced total variation functional, which we show to be equivalent to multiplex modularity maximization, while the second (DGFM3) directly maximizes multiplex modularity. The resulting non-linear matrix-valued ordinary differential equations (ODEs) are solved efficiently by a graph Merriman--Bence--Osher (MBO) scheme. Key to the efficiency is the approximate integration of the discrete linear differential operators by truncated eigendecompositions in the matrix exponential function. Numerical experiments on several real-world multiplex networks show that our methods are competitive with the state of the art with respect to various metrics. Their major benefit is a significant reduction of computational complexity leading to runtimes that are orders of magnitude faster for large multiplex networks.
A subspace method is introduced to solve large-scale trace ratio problems. This approach is matrix-free, requiring only the action of the two matrices involved in the trace ratio. At each iteration, a smaller trace ratio problem is addressed in the search subspace. Additionally, the algorithm is endowed with a restarting strategy, that ensures the monotonicity of the trace ratio value throughout the iterations. The behavior of the approximate solution is investigated from a theoretical viewpoint, extending existing results on Ritz values and vectors, as the angle between the search subspace and the exact solution approaches zero. Numerical experiments in multigroup classification show that this new subspace method tends to be more efficient than iterative approaches relying on (partial) eigenvalue decompositions at each step.
Despite advances in vision-language understanding, implementing image segmentation within multimodal architectures remains a fundamental challenge in modern artificial intelligence systems. Existing vision-language models, which primarily rely on backbone architectures or CLIP-based embedding learning, demonstrate inherent limitations in fine-grained spatial localization and operational capabilities. This paper introduces SJTU: Spatial Judgments in multimodal models - Towards Unified segmentation through coordinate detection, a novel framework that leverages spatial coordinate understanding to bridge vision-language interaction and precise segmentation, enabling accurate target identification through natural language instructions. The framework proposes a novel approach for integrating segmentation techniques with vision-language models based on multimodal spatial inference. By leveraging normalized coordinate detection for bounding boxes and translating it into actionable segmentation outputs, we explore the possibility of integrating multimodal spatial and language representations. Based on the proposed technical approach, the framework demonstrates superior performance on various benchmark datasets as well as accurate object segmentation. Results on the COCO 2017 dataset for general object detection and Pascal VOC datasets for semantic segmentation demonstrate the generalization capabilities of the framework.
The adoption of the Industrial Internet of Things (IIoT) as a complementary technology to Operational Technology (OT) has enabled a new level of standardised data access and process visibility. This convergence of Information Technology (IT), OT, and IIoT has also created new cybersecurity vulnerabilities and risks that must be managed. Artificial Intelligence (AI) is emerging as a powerful tool to monitor OT/IIoT networks for malicious activity and is a highly active area of research. AI researchers are applying advanced Machine Learning (ML) and Deep Learning (DL) techniques to the detection of anomalous or malicious activity in network traffic. They typically use datasets derived from IoT/IIoT/OT network traffic captures to measure the performance of their proposed approaches. Therefore, there is a widespread need for datasets for algorithm testing. This work systematically reviews publicly available network traffic capture-based datasets, including categorisation of contained attack types, review of metadata, and statistical as well as complexity analysis. Each dataset is analysed to provide researchers with metadata that can be used to select the best dataset for their research question. This results in an added benefit to the community as researchers can select the best dataset for their research more easily and according to their specific Machine Learning goals.
Large language models (LLMs) have become increasingly pivotal in various domains due the recent advancements in their performance capabilities. However, concerns persist regarding biases in LLMs, including gender, racial, and cultural biases derived from their training data. These biases raise critical questions about the ethical deployment and societal impact of LLMs. Acknowledging these concerns, this study investigates whether LLMs accurately reflect cross-cultural variations and similarities in moral perspectives. In assessing whether the chosen LLMs capture patterns of divergence and agreement on moral topics across cultures, three main methods are employed: (1) comparison of model-generated and survey-based moral score variances, (2) cluster alignment analysis to evaluate the correspondence between country clusters derived from model-generated moral scores and those derived from survey data, and (3) probing LLMs with direct comparative prompts. All three methods involve the use of systematic prompts and token pairs designed to assess how well LLMs understand and reflect cultural variations in moral attitudes. The findings of this study indicate overall variable and low performance in reflecting cross-cultural differences and similarities in moral values across the models tested, highlighting the necessity for improving models' accuracy in capturing these nuances effectively. The insights gained from this study aim to inform discussions on the ethical development and deployment of LLMs in global contexts, emphasizing the importance of mitigating biases and promoting fair representation across diverse cultural perspectives.
This paper presents a unifying framework for Trefftz-like methods, which allows the analysis and construction of discretization methods based on the decomposition into, and coupling of, local and global problems. We apply the framework to provide a comprehensive error analysis for the Embedded Trefftz discontinuous Galerkin method, for a wide range of second-order scalar elliptic partial differential equations and a scalar reaction-advection problem. We also analyze quasi-Trefftz methods with our framework and build bridges to other methods that are similar in virtue.
Combinatorial problems such as combinatorial optimization and constraint satisfaction problems arise in decision-making across various fields of science and technology. In real-world applications, when multiple optimal or constraint-satisfying solutions exist, enumerating all these solutions -- rather than finding just one -- is often desirable, as it provides flexibility in decision-making. However, combinatorial problems and their enumeration versions pose significant computational challenges due to combinatorial explosion. To address these challenges, we propose enumeration algorithms for combinatorial optimization and constraint satisfaction problems using Ising machines. Ising machines are specialized devices designed to efficiently solve combinatorial problems. Typically, they sample low-cost solutions in a stochastic manner. Our enumeration algorithms repeatedly sample solutions to collect all desirable solutions. The crux of the proposed algorithms is their stopping criteria for sampling, which are derived based on probability theory. In particular, the proposed algorithms have theoretical guarantees that the failure probability of enumeration is bounded above by a user-specified value, provided that lower-cost solutions are sampled more frequently and equal-cost solutions are sampled with equal probability. Many physics-based Ising machines are expected to (approximately) satisfy these conditions. As a demonstration, we applied our algorithm using simulated annealing to maximum clique enumeration on random graphs. We found that our algorithm enumerates all maximum cliques in large dense graphs faster than a conventional branch-and-bound algorithm specially designed for maximum clique enumeration. This demonstrates the promising potential of our proposed approach.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.