Integrating renewable resources within the transmission grid at a wide scale poses significant challenges for economic dispatch as it requires analysis with more optimization parameters, constraints, and sources of uncertainty. This motivates the investigation of more efficient computational methods, especially those for solving the underlying linear systems, which typically take more than half of the overall computation time. In this paper, we present our work on sparse linear solvers that take advantage of hardware accelerators, such as graphical processing units (GPUs), and improve the overall performance when used within economic dispatch computations. We treat the problems as sparse, which allows for faster execution but also makes the implementation of numerical methods more challenging. We present the first GPU-native sparse direct solver that can execute on both AMD and NVIDIA GPUs. We demonstrate significant performance improvements when using high-performance linear solvers within alternating current optimal power flow (ACOPF) analysis. Furthermore, we demonstrate the feasibility of getting significant performance improvements by executing the entire computation on GPU-based hardware. Finally, we identify outstanding research issues and opportunities for even better utilization of heterogeneous systems, including those equipped with GPUs.
Reinforcement Learning (RL) methods are typically sample-inefficient, making it challenging to train and deploy RL-policies in real world robots. Even a robust policy trained in simulation requires a real-world deployment to assess their performance. This paper proposes a new approach to evaluate the real-world performance of agent policies prior to deploying them in the real world. Our approach incorporates a simulator along with real-world offline data to evaluate the performance of any policy using the framework of Marginalized Importance Sampling (MIS). Existing MIS methods face two challenges: (1) large density ratios that deviate from a reasonable range and (2) indirect supervision, where the ratio needs to be inferred indirectly, thus exacerbating estimation error. Our approach addresses these challenges by introducing the target policy's occupancy in the simulator as an intermediate variable and learning the density ratio as the product of two terms that can be learned separately. The first term is learned with direct supervision and the second term has a small magnitude, thus making it computationally efficient. We analyze the sample complexity as well as error propagation of our two step-procedure. Furthermore, we empirically evaluate our approach on Sim2Sim environments such as Cartpole, Reacher, and Half-Cheetah. Our results show that our method generalizes well across a variety of Sim2Sim gap, target policies and offline data collection policies. We also demonstrate the performance of our algorithm on a Sim2Real task of validating the performance of a 7 DoF robotic arm using offline data along with the Gazebo simulator.
Ubiquitous robot control and human-robot collaboration using smart devices poses a challenging problem primarily due to strict accuracy requirements and sparse information. This paper presents a novel approach that incorporates a probabilistic differentiable filter, specifically the Differentiable Ensemble Kalman Filter (DEnKF), to facilitate robot control solely using Inertial Measurement Units (IMUs) from a smartwatch and a smartphone. The implemented system is cost-effective and achieves accurate estimation of the human pose state. Experiment results from human-robot handover tasks underscore that smart devices allow versatile and ubiquitous robot control. The code for this paper is available at //github.com/ir-lab/DEnKF and //github.com/wearable-motion-capture.
Traffic signal control (TSC) is a challenging problem within intelligent transportation systems and has been tackled using multi-agent reinforcement learning (MARL). While centralized approaches are often infeasible for large-scale TSC problems, decentralized approaches provide scalability but introduce new challenges, such as partial observability. Communication plays a critical role in decentralized MARL, as agents must learn to exchange information using messages to better understand the system and achieve effective coordination. Deep MARL has been used to enable inter-agent communication by learning communication protocols in a differentiable manner. However, many deep MARL communication frameworks proposed for TSC allow agents to communicate with all other agents at all times, which can add to the existing noise in the system and degrade overall performance. In this study, we propose a communication-based MARL framework for large-scale TSC. Our framework allows each agent to learn a communication policy that dictates "which" part of the message is sent "to whom". In essence, our framework enables agents to selectively choose the recipients of their messages and exchange variable length messages with them. This results in a decentralized and flexible communication mechanism in which agents can effectively use the communication channel only when necessary. We designed two networks, a synthetic $4 \times 4$ grid network and a real-world network based on the Pasubio neighborhood in Bologna. Our framework achieved the lowest network congestion compared to related methods, with agents utilizing $\sim 47-65 \%$ of the communication channel. Ablation studies further demonstrated the effectiveness of the communication policies learned within our framework.
Scene understanding plays an essential role in enabling autonomous driving and maintaining high standards of performance and safety. To address this task, cameras and laser scanners (LiDARs) have been the most commonly used sensors, with radars being less popular. Despite that, radars remain low-cost, information-dense, and fast-sensing techniques that are resistant to adverse weather conditions. While multiple works have been previously presented for radar-based scene semantic segmentation, the nature of the radar data still poses a challenge due to the inherent noise and sparsity, as well as the disproportionate foreground and background. In this work, we propose a novel approach to the semantic segmentation of radar scenes using a multi-input fusion of radar data through a novel architecture and loss functions that are tailored to tackle the drawbacks of radar perception. Our novel architecture includes an efficient attention block that adaptively captures important feature information. Our method, TransRadar, outperforms state-of-the-art methods on the CARRADA and RADIal datasets while having smaller model sizes. //github.com/YahiDar/TransRadar
In general, robotic dexterous hands are equipped with various sensors for acquiring multimodal contact information such as position, force, and pose of the grasped object. This multi-sensor-based design adds complexity to the robotic system. In contrast, vision-based tactile sensors employ specialized optical designs to enable the extraction of tactile information across different modalities within a single system. Nonetheless, the decoupling design for different modalities in common systems is often independent. Therefore, as the dimensionality of tactile modalities increases, it poses more complex challenges in data processing and decoupling, thereby limiting its application to some extent. Here, we developed a multimodal sensing system based on a vision-based tactile sensor, which utilizes visual representations of tactile information to perceive the multimodal contact information of the grasped object. The visual representations contain extensive content that can be decoupled by a deep neural network to obtain multimodal contact information such as classification, position, posture, and force of the grasped object. The results show that the tactile sensing system can perceive multimodal tactile information using only one single sensor and without different data decoupling designs for different modal tactile information, which reduces the complexity of the tactile system and demonstrates the potential for multimodal tactile integration in various fields such as biomedicine, biology, and robotics.
Reactive trajectory optimization for robotics presents formidable challenges, demanding the rapid generation of purposeful robot motion in complex and swiftly changing dynamic environments. While much existing research predominantly addresses robotic motion planning with predefined objectives, emerging problems in robotic trajectory optimization frequently involve dynamically evolving objectives and stochastic motion dynamics. However, effectively addressing such reactive trajectory optimization challenges for robot manipulators proves difficult due to inefficient, high-dimensional trajectory representations and a lack of consideration for time optimization. In response, we introduce a novel trajectory optimization framework called RETRO. RETRO employs adaptive optimization techniques that span both spatial and temporal dimensions. As a result, it achieves a remarkable computing complexity of $O(T^{2.4}) + O(Tn^{2})$, a significant improvement over the traditional application of DDP, which leads to a complexity of $O(n^{4})$ when reasonable time step sizes are used. To evaluate RETRO's performance in terms of error, we conducted a comprehensive analysis of its regret bounds, comparing it to an Oracle value function obtained through an Oracle trajectory optimization algorithm. Our analytical findings demonstrate that RETRO's total regret can be upper-bounded by a function of the chosen time step size. Moreover, our approach delivers smoothly optimized robot trajectories within the joint space, offering flexibility and adaptability for various tasks. It can seamlessly integrate task-specific requirements such as collision avoidance while maintaining real-time control rates. We validate the effectiveness of our framework through extensive simulations and real-world robot experiments in closed-loop manipulation scenarios.
Dueling bandits is a prominent framework for decision-making involving preferential feedback, a valuable feature that fits various applications involving human interaction, such as ranking, information retrieval, and recommendation systems. While substantial efforts have been made to minimize the cumulative regret in dueling bandits, a notable gap in the current research is the absence of regret bounds that account for the inherent uncertainty in pairwise comparisons between the dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty in the problem. To bridge this gap, this paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $\tilde O\big(d\sqrt{\sum_{t=1}^T\sigma_t^2} + d\big)$, where $\sigma_t$ is the variance of the pairwise comparison in round $t$, $d$ is the dimension of the context vectors, and $T$ is the time horizon. Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $\tilde O(d)$ regret. We perform empirical experiments on synthetic data to confirm the advantage of our method over previous variance-agnostic algorithms.
With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.