亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic detection of dicentric chromosomes is an essential step to estimate radiation exposure and development of end to end emergency bio dosimetry systems. During accidents, a large amount of data is required to be processed for extensive testing to formulate a medical treatment plan for the masses, which requires this process to be automated. Current approaches require human adjustments according to the data and therefore need a human expert to calibrate the system. This paper proposes a completely data driven framework which requires minimum intervention of field experts and can be deployed in emergency cases with relative ease. Our approach involves YOLOv4 to detect the chromosomes and remove the debris in each image, followed by a classifier that differentiates between an analysable chromosome and a non-analysable one. Images are extracted from YOLOv4 based on the protocols described by WHO-BIODOSNET. The analysable chromosome is classified as Monocentric or Dicentric and an image is accepted for consideration of dose estimation based on the analysable chromosome count. We report an accuracy in dicentric identification of 94.33% on a 1:1 split of Dicentric and Monocentric Chromosomes.

相關內容

This paper empirically investigates the influence of different data splits and splitting strategies on the performance of dysfluency detection systems. For this, we perform experiments using wav2vec 2.0 models with a classification head as well as support vector machines (SVM) in conjunction with the features extracted from the wav2vec 2.0 model to detect dysfluencies. We train and evaluate the systems with different non-speaker-exclusive and speaker-exclusive splits of the Stuttering Events in Podcasts (SEP-28k) dataset to shed some light on the variability of results w.r.t. to the partition method used. Furthermore, we show that the SEP-28k dataset is dominated by only a few speakers, making it difficult to evaluate. To remedy this problem, we created SEP-28k-Extended (SEP-28k-E), containing semi-automatically generated speaker and gender information for the SEP-28k corpus, and suggest different data splits, each useful for evaluating other aspects of methods for dysfluency detection.

In a Federated Learning (FL) setup, a number of devices contribute to the training of a common model. We present a method for selecting the devices that provide updates in order to achieve improved generalization, fast convergence, and better device-level performance. We formulate a min-max optimization problem and decompose it into a primal-dual setup, where the duality gap is used to quantify the device-level performance. Our strategy combines \emph{exploration} of data freshness through a random device selection with \emph{exploitation} through simplified estimates of device contributions. This improves the performance of the trained model both in terms of generalization and personalization. A modified Truncated Monte-Carlo (TMC) method is applied during the exploitation phase to estimate the device's contribution and lower the communication overhead. The experimental results show that the proposed approach has a competitive performance, with lower communication overhead and competitive personalization performance against the baseline schemes.

In this thesis, I investigated and enhanced the visual counting task, which automatically estimates the number of objects in still images or video frames. Recently, due to the growing interest in it, several CNN-based solutions have been suggested by the scientific community. These artificial neural networks provide a way to automatically learn effective representations from raw visual data and can be successfully employed to address typical challenges characterizing this task, such as different illuminations and object scales. But apart from these difficulties, I targeted some other crucial limitations in the adoption of CNNs, proposing solutions that I experimentally evaluated in the context of the counting task which turns out to be particularly affected by these shortcomings. In particular, I tackled the problem related to the lack of data needed for training current CNN-based solutions. Given that the budget for labeling is limited, data scarcity still represents an open problem, particularly evident in tasks such as the counting one, where the objects to be labeled are thousands per image. Specifically, I introduced synthetic datasets gathered from virtual environments, where the training labels are automatically collected. I proposed Domain Adaptation strategies aiming at mitigating the domain gap existing between the training and test data distributions. I presented a counting strategy where I took advantage of the redundant information characterizing datasets labeled by multiple annotators. Moreover, I tackled the engineering challenges coming out of the adoption of CNN techniques in environments with limited power resources. I introduced solutions for counting vehicles directly onboard embedded vision systems. Finally, I designed an embedded modular Computer Vision-based system that can carry out several tasks to help monitor individual and collective human safety rules.

Modern vehicles rely on a fleet of electronic control units (ECUs) connected through controller area network (CAN) buses for critical vehicular control. However, with the expansion of advanced connectivity features in automobiles and the elevated risks of internal system exposure, the CAN bus is increasingly prone to intrusions and injection attacks. The ordinary injection attacks disrupt the typical timing properties of the CAN data stream, and the rule-based intrusion detection systems (IDS) can easily detect them. However, advanced attackers can inject false data to the time series sensory data (signal), while looking innocuous by the pattern/frequency of the CAN messages. Such attacks can bypass the rule-based IDS or any anomaly-based IDS built on binary payload data. To make the vehicles robust against such intelligent attacks, we propose CANShield, a signal-based intrusion detection framework for the CAN bus. CANShield consists of three modules: a data preprocessing module that handles the high-dimensional CAN data stream at the signal level and makes them suitable for a deep learning model; a data analyzer module consisting of multiple deep autoencoder (AE) networks, each analyzing the time-series data from a different temporal perspective; and finally an attack detection module that uses an ensemble method to make the final decision. Evaluation results on two high-fidelity signal-based CAN attack datasets show the high accuracy and responsiveness of CANShield in detecting wide-range of advanced intrusion attacks.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

北京阿比特科技有限公司