This work addresses the block-diagonal semidefinite program (SDP) relaxations for the clique number of the Paley graphs. The size of the maximal clique (clique number) of a graph is a classic NP-complete problem; a Paley graph is a deterministic graph where two vertices are connected if their difference is a quadratic residue (square) in a finite field with the number of elements given by certain primes and prime powers. Improving the upper bound for the Paley graph clique number for prime powers that are non-squares is an open problem in combinatorics. Moreover, since quadratic residues exhibit pseudorandom properties, Paley graphs are related to the construction of deterministic restricted isometries, an open problem in compressed sensing. Recent work provides numerical evidence that the current upper bounds can be improved by the sum-of-squares (SOS) relaxations. In particular, the bounds given by the SOS relaxations of degree 4 (SOS-4) have been empirically observed to be growing at an order smaller than square root of the prime. However, computations of SOS-4 appear to be intractable with respect to large graphs. Gvozdenovic et al. introduced a more computationally efficient block-diagonal hierarchy of SDPs and computed the values of these SDPs of degrees 2 (L2) for the Paley graph clique numbers associated with primes p less or equal to 809, which bound from above the corresponding SOS-4 relaxations. We compute the values of the L2 relaxations for p's between 821 and 997. Our results provide some numerical evidence that these relaxations, and therefore also the SOS-4 relaxations, may be scaling at an order smaller than the square root of p. However, due to the size of the SDPs, we have not been able to compute L2 relaxations for p's greater than 997. Therefore, our scaling estimate is not conclusive and presents an interesting open problem for further study.
The rapid advancement of Generative Adversarial Networks (GANs) necessitates the need to robustly evaluate these models. Among the established evaluation criteria, the Fr\'{e}chet Inception Distance (FID) has been widely adopted due to its conceptual simplicity, fast computation time, and strong correlation with human perception. However, FID has inherent limitations, mainly stemming from its assumption that feature embeddings follow a Gaussian distribution, and therefore can be defined by their first two moments. As this does not hold in practice, in this paper we explore the importance of third-moments in image feature data and use this information to define a new measure, which we call the Skew Inception Distance (SID). We prove that SID is a pseudometric on probability distributions, show how it extends FID, and present a practical method for its computation. Our numerical experiments support that SID either tracks with FID or, in some cases, aligns more closely with human perception when evaluating image features of ImageNet data.
In this work, we study how the performance of a given direction changes with its sampling ratio in Multilingual Neural Machine Translation (MNMT). By training over 200 multilingual models with various model sizes, data sizes, and language directions, we find it interesting that the performance of certain translation direction does not always improve with the increase of its weight in the multi-task optimization objective. Accordingly, scalarization method leads to a multitask trade-off front that deviates from the traditional Pareto front when there exists data imbalance in the training corpus, which poses a great challenge to improve the overall performance of all directions. Based on our observations, we propose the Double Power Law to predict the unique performance trade-off front in MNMT, which is robust across various languages, data adequacy, and the number of tasks. Finally, we formulate the sample ratio selection problem in MNMT as an optimization problem based on the Double Power Law. In our experiments, it achieves better performance than temperature searching and gradient manipulation methods with only 1/5 to 1/2 of the total training budget. We release the code at //github.com/pkunlp-icler/ParetoMNMT for reproduction.
Confidence intervals (CI) for the IPW estimators of the ATT and ATO might not always yield conservative CIs when using the 'robust sandwich variance' estimator. In this manuscript, we identify scenarios where this variance estimator can be employed to derive conservative CIs. Specifically, for the ATT, a conservative CI can be derived when there's a homogeneous treatment effect or the interaction effect surpasses the effect from the covariates alone. For the ATO, conservative CIs can be derived under certain conditions, such as when there are homogeneous treatment effects, when there exists significant treatment-confounder interactions, or when there's a large number of members in the control groups.
The study explores the capabilities of OpenAI's ChatGPT in solving different types of physics problems. ChatGPT (with GPT-4) was queried to solve a total of 40 problems from a college-level engineering physics course. These problems ranged from well-specified problems, where all data required for solving the problem was provided, to under-specified, real-world problems where not all necessary data were given. Our findings show that ChatGPT could successfully solve 62.5% of the well-specified problems, but its accuracy drops to 8.3% for under-specified problems. Analysis of the model's incorrect solutions revealed three distinct failure modes: 1) failure to construct accurate models of the physical world, 2) failure to make reasonable assumptions about missing data, and 3) calculation errors. The study offers implications for how to leverage LLM-augmented instructional materials to enhance STEM education. The insights also contribute to the broader discourse on AI's strengths and limitations, serving both educators aiming to leverage the technology and researchers investigating human-AI collaboration frameworks for problem-solving and decision-making.
We present Consistent Assignment of Views over Random Partitions (CARP), a self-supervised clustering method for representation learning of visual features. CARP learns prototypes in an end-to-end online fashion using gradient descent without additional non-differentiable modules to solve the cluster assignment problem. CARP optimizes a new pretext task based on random partitions of prototypes that regularizes the model and enforces consistency between views' assignments. Additionally, our method improves training stability and prevents collapsed solutions in joint-embedding training. Through an extensive evaluation, we demonstrate that CARP's representations are suitable for learning downstream tasks. We evaluate CARP's representations capabilities in 17 datasets across many standard protocols, including linear evaluation, few-shot classification, k-NN, k-means, image retrieval, and copy detection. We compare CARP performance to 11 existing self-supervised methods. We extensively ablate our method and demonstrate that our proposed random partition pretext task improves the quality of the learned representations by devising multiple random classification tasks. In transfer learning tasks, CARP achieves the best performance on average against many SSL methods trained for a longer time.
Deep learning accelerators address the computational demands of Deep Neural Networks (DNNs), departing from the traditional Von Neumann execution model. They leverage specialized hardware to align with the application domain's structure. Compilers for these accelerators face distinct challenges compared to those for general-purpose processors. These challenges include exposing and managing more micro-architectural features, handling software-managed scratch pads for on-chip storage, explicitly managing data movement, and matching DNN layers with varying hardware capabilities. These complexities necessitate a new approach to compiler design, as traditional compilers mainly focused on generating fine-grained instruction sequences while abstracting micro-architecture details. This paper introduces the Architecture Covenant Graph (ACG), an abstract representation of an architectural structure's components and their programmable capabilities. By enabling the compiler to work with the ACG, it allows for adaptable compilation workflows when making changes to accelerator design, reducing the need for a complete compiler redevelopment. Codelets, which express DNN operation functionality and evolve into execution mappings on the ACG, are key to this process. The Covenant compiler efficiently targets diverse deep learning accelerators, achieving 93.8% performance compared to state-of-the-art, hand-tuned DNN layer implementations when compiling 14 DNN layers from various models on two different architectures.
This study enhances option pricing by presenting unique pricing model fractional order Black-Scholes-Merton (FOBSM) which is based on the Black-Scholes-Merton (BSM) model. The main goal is to improve the precision and authenticity of option pricing, matching them more closely with the financial landscape. The approach integrates the strengths of both the BSM and neural network (NN) with complex diffusion dynamics. This study emphasizes the need to take fractional derivatives into account when analyzing financial market dynamics. Since FOBSM captures memory characteristics in sequential data, it is better at simulating real-world systems than integer-order models. Findings reveals that in complex diffusion dynamics, this hybridization approach in option pricing improves the accuracy of price predictions. the key contribution of this work lies in the development of a novel option pricing model (FOBSM) that leverages fractional calculus and neural networks to enhance accuracy in capturing complex diffusion dynamics and memory effects in financial data.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.