亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the cooperative cellular network, relay-like base stations are connected to the central processor (CP) via rate-limited fronthaul links and the joint processing is performed at the CP, which thus can effectively mitigate the multiuser interference. In this paper, we consider the joint beamforming and compression problem with per-antenna power constraints in the cooperative cellular network. We first establish the equivalence between the considered problem and its semidefinite relaxation (SDR). Then we further derive the partial Lagrangian dual of the SDR problem and show that the objective function of the obtained dual problem is differentiable. Based on the differentiability, we propose two efficient projected gradient ascent algorithms for solving the dual problem, which are projected exact gradient ascent (PEGA) and projected inexact gradient ascent (PIGA). While PEGA is guaranteed to find the global solution of the dual problem (and hence the global solution of the original problem), PIGA is more computationally efficient due to the lower complexity in inexactly computing the gradient. Global optimality and high efficiency of the proposed algorithms are demonstrated via numerical experiments.

相關內容

As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.

Part-prototype networks (e.g., ProtoPNet, ProtoTree, and ProtoPool) have attracted broad research interest for their intrinsic interpretability and comparable accuracy to non-interpretable counterparts. However, recent works find that the interpretability from prototypes is fragile, due to the semantic gap between the similarities in the feature space and that in the input space. In this work, we strive to address this challenge by making the first attempt to quantitatively and objectively evaluate the interpretability of the part-prototype networks. Specifically, we propose two evaluation metrics, termed as consistency score and stability score, to evaluate the explanation consistency across images and the explanation robustness against perturbations, respectively, both of which are essential for explanations taken into practice. Furthermore, we propose an elaborated part-prototype network with a shallow-deep feature alignment (SDFA) module and a score aggregation (SA) module to improve the interpretability of prototypes. We conduct systematical evaluation experiments and provide substantial discussions to uncover the interpretability of existing part-prototype networks. Experiments on three benchmarks across nine architectures demonstrate that our model achieves significantly superior performance to the state of the art, in both the accuracy and interpretability. Our code is available at //github.com/hqhQAQ/EvalProtoPNet.

Deep neural networks (DNNs) often accept high-dimensional media data (e.g., photos, text, and audio) and understand their perceptual content (e.g., a cat). To test DNNs, diverse inputs are needed to trigger mis-predictions. Some preliminary works use byte-level mutations or domain-specific filters (e.g., foggy), whose enabled mutations may be limited and likely error-prone. SOTA works employ deep generative models to generate (infinite) inputs. Also, to keep the mutated inputs perceptually valid (e.g., a cat remains a "cat" after mutation), existing efforts rely on imprecise and less generalizable heuristics. This study revisits two key objectives in media input mutation - perception diversity (DIV) and validity (VAL) - in a rigorous manner based on manifold, a well-developed theory capturing perceptions of high-dimensional media data in a low-dimensional space. We show important results that DIV and VAL inextricably bound each other, and prove that SOTA generative model-based methods fundamentally fail to mutate real-world media data (either sacrificing DIV or VAL). In contrast, we discuss the feasibility of mutating real-world media data with provably high DIV and VAL based on manifold. We concretize the technical solution of mutating media data of various formats (images, audios, text) via a unified manner based on manifold. Specifically, when media data are projected into a low-dimensional manifold, the data can be mutated by walking on the manifold with certain directions and step sizes. When contrasted with the input data, the mutated data exhibit encouraging DIV in the perceptual traits (e.g., lying vs. standing dog) while retaining reasonably high VAL (i.e., a dog remains a dog). We implement our techniques in DEEPWALK for testing DNNs. DEEPWALK outperforms prior methods in testing comprehensiveness and can find more error-triggering inputs with higher quality.

In this work, we introduce an iterative decoupled algorithm designed for addressing the quasi-static multiple-network poroelasticity problem. This problem pertains to the simultaneous modeling of fluid flow and deformations within an elastic porous medium permeated by multiple fluid networks, each with distinct characteristics. Our approach focuses on the total-pressure-based formulation, which treats the solid displacement, total pressure, and network pressures as primary unknowns. This formulation transforms the original problem into a combination of the generalized Stokes problem and the parabolic problem, offering certain advantages such as mitigating elastic locking effects and streamlining the discretization process. Notably, the algorithm ensures unconditional convergence to the solution of the total-pressure-based coupled algorithm. To validate the accuracy and efficiency of our method, we present numerical experiments. The robustness of the algorithm with respect to the physical parameters and the discretization parameters is carefully investigated.

Software-defined satellite-terrestrial integrated networks (SDSTNs) are seen as a promising paradigm for achieving high resource flexibility and global communication coverage. However, low latency service provisioning is still challenging due to the fast variation of network topology and limited onboard resource at low earth orbit satellites. To address this issue, we study service provisioning in SDSTNs via joint optimization of virtual network function (VNF) placement and routing planning with network dynamics characterized by a time-evolving graph. Aiming at minimizing average service latency, the corresponding problem is formulated as an integer nonlinear programming under resource, VNF deployment, and time-slotted flow constraints. Since exhaustive search is intractable, we transform the primary problem into an integer linear programming by involving auxiliary variables and then propose a Benders decomposition based branch-and-cut (BDBC) algorithm. Towards practical use, a time expansion-based decoupled greedy (TEDG) algorithm is further designed with rigorous complexity analysis. Extensive experiments demonstrate the optimality of BDBC algorithm and the low complexity of TEDG algorithm. Meanwhile, it is indicated that they can improve the number of completed services within a configuration period by up to 58% and reduce the average service latency by up to 17% compared to baseline schemes.

Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.

Coding schemes for several problems in network information theory are constructed starting from point-to-point channel codes that are designed for symmetric channels. Given that the point-to-point codes satisfy certain properties pertaining to the rate, the error probability, and the distribution of decoded sequences, bounds on the performance of the coding schemes are derived and shown to hold irrespective of other properties of the codes. In particular, we consider the problems of lossless and lossy source coding, Slepian-Wolf coding, Wyner-Ziv coding, Berger-Tung coding, multiple description coding, asymmetric channel coding, Gelfand-Pinsker coding, coding for multiple access channels, Marton coding for broadcast channels, and coding for cloud radio access networks (C-RAN's). We show that the coding schemes can achieve the best known inner bounds for these problems, provided that the constituent point-to-point channel codes are rate-optimal. This would allow one to leverage commercial off-the-shelf codes for point-to-point symmetric channels in the practical implementation of codes over networks. Simulation results demonstrate the gain of the proposed coding schemes compared to existing practical solutions to these problems.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司