亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is known that difference equations generated as the Newton-Raphson iteration for quadratic equations are solvable in closed form, and the solution can be constructed from linear three-term recurrence relations with constant coefficients. We show that the same construction for four-term recurrence relations gives the solution to the initial value problem of difference equations similar to the Newton-Raphson iteration for cubic equations. In many cases, the solution converges to a root of the cubic equation and the convergence rate is quadratic.

相關內容

We construct a Convolution Quadrature (CQ) scheme for the quasilinear subdiffusion equation and supply it with the fast and oblivious implementation. In particular we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the Finite Element Method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. As a passing result, we also obtain a discrete Gronwall inequality for the CQ, which is a crucial ingredient of our convergence proof based on the energy method. The paper is concluded with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.

We propose three test criteria each of which is appropriate for testing, respectively, the equivalence hypotheses of symmetry, of homogeneity, and of independence, with multivariate data. All quantities have the common feature of involving weighted--type distances between characteristic functions and are convenient from the computational point of view if the weight function is properly chosen. The asymptotic behavior of the tests under the null hypothesis is investigated, and numerical studies are conducted in order to examine the performance of the criteria in finite samples.

Iterative sketching and sketch-and-precondition are randomized algorithms used for solving overdetermined linear least-squares problems. When implemented in exact arithmetic, these algorithms produce high-accuracy solutions to least-squares problems faster than standard direct methods based on QR factorization. Recently, Meier, Nakatsukasa, Townsend, and Webb demonstrated numerical instabilities in a version of sketch-and-precondition in floating point arithmetic (arXiv:2302.07202). The work of Meier et al. raises the question: Is there a randomized least-squares solver that is both fast and stable? This paper resolves this question in the affirmative by proving that iterative sketching, appropriately implemented, is forward stable. Numerical experiments confirm the theoretical findings, demonstrating that iterative sketching is stable and faster than QR-based solvers for large problem instances.

Generation of simulated detector response to collision products is crucial to data analysis in particle physics, but computationally very expensive. One subdetector, the calorimeter, dominates the computational time due to the high granularity of its cells and complexity of the interactions. Generative models can provide more rapid sample production, but currently require significant effort to optimize performance for specific detector geometries, often requiring many models to describe the varying cell sizes and arrangements, without the ability to generalize to other geometries. We develop a $\textit{geometry-aware}$ autoregressive model, which learns how the calorimeter response varies with geometry, and is capable of generating simulated responses to unseen geometries without additional training. The geometry-aware model outperforms a baseline unaware model by over $50\%$ in several metrics such as the Wasserstein distance between the generated and the true distributions of key quantities which summarize the simulated response. A single geometry-aware model could replace the hundreds of generative models currently designed for calorimeter simulation by physicists analyzing data collected at the Large Hadron Collider. This proof-of-concept study motivates the design of a foundational model that will be a crucial tool for the study of future detectors, dramatically reducing the large upfront investment usually needed to develop generative calorimeter models.

Although the vectorization operation is known and well-defined, it is only defined for 2-D matrices, and its inverse isn't as well-popularized. This work proposes to generalize the vectorization to higher dimensions, and define mathematically its inverse operation.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

A new linear relaxation system for nonconservative hyperbolic systems is introduced, in which a nonlocal source term accounts for the nonconservative product of the original system. Using an asymptotic analysis the relaxation limit and its stability are investigated. It is shown that the path-conservative Lax-Friedrichs scheme arises from a discrete limit of an implicit-explicit scheme for the relaxation system. The relaxation approach is further employed to couple two nonconservative systems at a static interface. A coupling strategy motivated from conservative Kirchhoff conditions is introduced and a corresponding Riemann solver provided. A fully discrete scheme for coupled nonconservative products is derived and studied in terms of path-conservation. Numerical experiments applying the approach to a coupled model of vascular blood flow are presented.

Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic differential equations under the condition $R < 1$, where $R$ measures the ratio of nonlinearity to dissipation using the $\ell_2$ norm. Here we develop an efficient quantum algorithm based on [1] for reaction-diffusion equations, a class of nonlinear partial differential equations (PDEs). To achieve this, we improve upon the Carleman linearization approach introduced in [1] to obtain a faster convergence rate under the condition $R_D < 1$, where $R_D$ measures the ratio of nonlinearity to dissipation using the $\ell_{\infty}$ norm. Since $R_D$ is independent of the number of spatial grid points $n$ while $R$ increases with $n$, the criterion $R_D<1$ is significantly milder than $R<1$ for high-dimensional systems and can stay convergent under grid refinement for approximating PDEs. As applications of our quantum algorithm we consider the Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics. In particular, we show how to estimate the mean square kinetic energy in the solution by postprocessing the quantum state that encodes it to extract derivative information.

In this work, we study some mathematical features for the action ground states of the defocusing nonlinear Schr\"odinger equation with possible rotation. Main attention is paid to characterizing the relation between the action ground states and the energy ground states. Theoretical equivalence and non-equivalence results have been established. Asymptotic behaviours of the physical quantities are derived in some limiting parameter regimes. Numerical evidence of non-equivalence is observed and numerical explorations for vortices phenomena in action ground states are done.

For a linear difference equation with the coefficients being computable sequences, we establish algorithmic undecidability of the problem of determining the dimension of the solution space including the case when some additional prior information on the dimension is available.

北京阿比特科技有限公司