We propose a solution for linear inverse problems based on higher-order Langevin diffusion. More precisely, we propose pre-conditioned second-order and third-order Langevin dynamics that provably sample from the posterior distribution of our unknown variables of interest while being computationally more efficient than their first-order counterpart and the non-conditioned versions of both dynamics. Moreover, we prove that both pre-conditioned dynamics are well-defined and have the same unique invariant distributions as the non-conditioned cases. We also incorporate an annealing procedure that has the double benefit of further accelerating the convergence of the algorithm and allowing us to accommodate the case where the unknown variables are discrete. Numerical experiments in two different tasks in communications (MIMO symbol detection and channel estimation) and in three tasks for images showcase the generality of our method and illustrate the high performance achieved relative to competing approaches (including learning-based ones) while having comparable or lower computational complexity.
We present a deep learning-based iterative approach to solve the discrete heterogeneous Helmholtz equation for high wavenumbers. Combining classical iterative multigrid solvers and convolutional neural networks (CNNs) via preconditioning, we obtain a learned neural solver that is faster and scales better than a standard multigrid solver. Our approach offers three main contributions over previous neural methods of this kind. First, we construct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the coarsest grid of the U-Net, where convolution kernels are inverted. This alleviates the field of view problem in CNNs and allows better scalability. Second, we improve upon the previous CNN preconditioner in terms of the number of parameters, computation time, and convergence rates. Third, we propose a multiscale training approach that enables the network to scale to problems of previously unseen dimensions while still maintaining a reasonable training procedure. Our encoder-solver architecture can be used to generalize over different slowness models of various difficulties and is efficient at solving for many right-hand sides per slowness model. We demonstrate the benefits of our novel architecture with numerical experiments on a variety of heterogeneous two-dimensional problems at high wavenumbers.
We present solutions to the matrix completion problems proposed by the Alignment Research Center that have a polynomial dependence on the precision $\varepsilon$. The motivation for these problems is to enable efficient computation of heuristic estimators to formally evaluate and reason about different quantities of deep neural networks in the interest of AI alignment. Our solutions involve reframing the matrix completion problems as a semidefinite program (SDP) and using recent advances in spectral bundle methods for fast, efficient, and scalable SDP solving.
Correlation coefficients play a pivotal role in quantifying linear relationships between random variables. Yet, their application to time series data is very challenging due to temporal dependencies. This paper introduces a novel approach to estimate the statistical significance of correlation coefficients in time series data, addressing the limitations of traditional methods based on the concept of effective degrees of freedom (or effective sample size, ESS). These effective degrees of freedom represent the independent sample size that would yield comparable test statistics under the assumption of no temporal correlation. We propose to assume a parametric Gaussian form for the autocorrelation function. We show that this assumption, motivated by a Laplace approximation, enables a simple estimator of the ESS that depends only on the temporal derivatives of the time series. Through numerical experiments, we show that the proposed approach yields accurate statistics while significantly reducing computational overhead. In addition, we evaluate the adequacy of our approach on real physiological signals, for assessing the connectivity measures in electrophysiology and detecting correlated arm movements in motion capture data. Our methodology provides a simple tool for researchers working with time series data, enabling robust hypothesis testing in the presence of temporal dependencies.
In this paper, we propose an orthogonal block wise Kaczmarz (POBK) algorithm based on preprocessing techniques to solve large-scale sparse linear systems $Ax=f$. Firstly, the Reverse Cuthill McKee Algorithm (RCM) algorithm is used to preprocess the linear system, and then a new partitioning strategy is proposed to divide orthogonal blocks into one category, in order to accelerate the convergence rate of the Kaczmarz algorithm. The convergence of the POBK algorithm has been theoretically proven, and a theoretical analysis of its faster convergence is also provided. In addition, the experimental results confirm that this algorithm is far superior to GRBK, RBK(k), and GREBK(k) algorithms in both iteration steps (IT) and CPU time aspects.
To resolve the semantic ambiguity in texts, we propose a model, which innovatively combines a knowledge graph with an improved attention mechanism. An existing knowledge base is utilized to enrich the text with relevant contextual concepts. The model operates at both character and word levels to deepen its understanding by integrating the concepts. We first adopt information gain to select import words. Then an encoder-decoder framework is used to encode the text along with the related concepts. The local attention mechanism adjusts the weight of each concept, reducing the influence of irrelevant or noisy concepts during classification. We improve the calculation formula for attention scores in the local self-attention mechanism, ensuring that words with different frequencies of occurrence in the text receive higher attention scores. Finally, the model employs a Bi-directional Gated Recurrent Unit (Bi-GRU), which is effective in feature extraction from texts for improved classification accuracy. Its performance is demonstrated on datasets such as AGNews, Ohsumed, and TagMyNews, achieving accuracy of 75.1%, 58.7%, and 68.5% respectively, showing its effectiveness in classifying tasks.
sEMG pattern recognition algorithms have been explored extensively in decoding movement intent, yet are known to be vulnerable to changing recording conditions, exhibiting significant drops in performance across subjects, and even across sessions. Multi-channel surface EMG, also referred to as high-density sEMG (HD-sEMG) systems, have been used to improve performance with the information collected through the use of additional electrodes. However, a lack of robustness is ever present due to limited datasets and the difficulties in addressing sources of variability, such as electrode placement. In this study, we propose training on a collection of input channel subsets and augmenting our training distribution with data from different electrode locations, simultaneously targeting electrode shift and reducing input dimensionality. Our method increases robustness against electrode shift and results in significantly higher intersession performance across subjects and classification algorithms.
We propose two extensions to existing importance sampling based methods for lossy compression. First, we introduce an importance sampling based compression scheme that is a variant of ordered random coding (Theis and Ahmed, 2022) and is amenable to direct evaluation of the achievable compression rate for a finite number of samples. Our second and major contribution is the importance matching lemma, which is a finite proposal counterpart of the recently introduced Poisson matching lemma (Li and Anantharam, 2021). By integrating with deep learning, we provide a new coding scheme for distributed lossy compression with side information at the decoder. We demonstrate the effectiveness of the proposed scheme through experiments involving synthetic Gaussian sources, distributed image compression with MNIST and vertical federated learning with CIFAR-10.
In real life, we frequently come across data sets that involve some independent explanatory variable(s) generating a set of ordinal responses. These ordinal responses may correspond to an underlying continuous latent variable, which is linearly related to the covariate(s), and takes a particular (ordinal) label depending on whether this latent variable takes value in some suitable interval specified by a pair of (unknown) cut-offs. The most efficient way of estimating the unknown parameters (i.e., the regression coefficients and the cut-offs) is the method of maximum likelihood (ML). However, contamination in the data set either in the form of misspecification of ordinal responses, or the unboundedness of the covariate(s), might destabilize the likelihood function to a great extent where the ML based methodology might lead to completely unreliable inferences. In this paper, we explore a minimum distance estimation procedure based on the popular density power divergence (DPD) to yield robust parameter estimates for the ordinal response model. This paper highlights how the resulting estimator, namely the minimum DPD estimator (MDPDE), can be used as a practical robust alternative to the classical procedures based on the ML. We rigorously develop several theoretical properties of this estimator, and provide extensive simulations to substantiate the theory developed.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.