Temporal receptive fields of models play an important role in action segmentation. Large receptive fields facilitate the long-term relations among video clips while small receptive fields help capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combination patterns further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation guided iterative local search scheme to refine combinations effectively. Our global-to-local search can be plugged into existing action segmentation methods to achieve state-of-the-art performance.
Attempt to fully discover the temporal diversity for self-supervised video representation learning, this work takes advantage of the temporal dependencies of videos and further proposes a novel self-supervised method named Temporal Contrastive Graph Learning (TCGL). In contrast to the existing methods that consider the temporal dependency from a single scale, our TCGL roots in a hybrid graph contrastive learning strategy to regard the inter-snippet and intra-snippet temporal dependencies as self-supervision signals for temporal representation learning. To learn multi-scale temporal dependencies, the TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet temporal contrastive graph modules. By randomly removing edges and masking node features of the intra-snippet graphs or inter-snippet graphs, the TCGL can generate different correlated graph views. Then, specific contrastive modules are designed to maximize the agreement between node embeddings in different views. To learn the global context representation and recalibrate the channel-wise features adaptively, we introduce an adaptive video snippet order prediction module, which leverages the relational knowledge among video snippets to predict the actual snippet orders. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.
Temporal relational modeling in video is essential for human action understanding, such as action recognition and action segmentation. Although Graph Convolution Networks (GCNs) have shown promising advantages in relation reasoning on many tasks, it is still a challenge to apply graph convolution networks on long video sequences effectively. The main reason is that large number of nodes (i.e., video frames) makes GCNs hard to capture and model temporal relations in videos. To tackle this problem, in this paper, we introduce an effective GCN module, Dilated Temporal Graph Reasoning Module (DTGRM), designed to model temporal relations and dependencies between video frames at various time spans. In particular, we capture and model temporal relations via constructing multi-level dilated temporal graphs where the nodes represent frames from different moments in video. Moreover, to enhance temporal reasoning ability of the proposed model, an auxiliary self-supervised task is proposed to encourage the dilated temporal graph reasoning module to find and correct wrong temporal relations in videos. Our DTGRM model outperforms state-of-the-art action segmentation models on three challenging datasets: 50Salads, Georgia Tech Egocentric Activities (GTEA), and the Breakfast dataset. The code is available at //github.com/redwang/DTGRM.
Deep learning has become the most widely used approach for cardiac image segmentation in recent years. In this paper, we provide a review of over 100 cardiac image segmentation papers using deep learning, which covers common imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound (US) and major anatomical structures of interest (ventricles, atria and vessels). In addition, a summary of publicly available cardiac image datasets and code repositories are included to provide a base for encouraging reproducible research. Finally, we discuss the challenges and limitations with current deep learning-based approaches (scarcity of labels, model generalizability across different domains, interpretability) and suggest potential directions for future research.
Most state-of-the-art action localization systems process each action proposal individually, without explicitly exploiting their relations during learning. However, the relations between proposals actually play an important role in action localization, since a meaningful action always consists of multiple proposals in a video. In this paper, we propose to exploit the proposal-proposal relations using Graph Convolutional Networks (GCNs). First, we construct an action proposal graph, where each proposal is represented as a node and their relations between two proposals as an edge. Here, we use two types of relations, one for capturing the context information for each proposal and the other one for characterizing the correlations between distinct actions. Then we apply the GCNs over the graph to model the relations among different proposals and learn powerful representations for the action classification and localization. Experimental results show that our approach significantly outperforms the state-of-the-art on THUMOS14 (49.1% versus 42.8%). Moreover, augmentation experiments on ActivityNet also verify the efficacy of modeling action proposal relationships. Codes are available at //github.com/Alvin-Zeng/PGCN.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require that a model learns from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with arbitrary depth. Although the primitive GNNs have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on graph convolutional network (GCN) and gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.
We propose novel Stacked Spatio-Temporal Graph Convolutional Networks (Stacked-STGCN) for action segmentation, i.e., predicting and localizing a sequence of actions over long videos. We extend the Spatio-Temporal Graph Convolutional Network (STGCN) originally proposed for skeleton-based action recognition to enable nodes with different characteristics (e.g., scene, actor, object, action, etc.), feature descriptors with varied lengths, and arbitrary temporal edge connections to account for large graph deformation commonly associated with complex activities. We further introduce the stacked hourglass architecture to STGCN to leverage the advantages of an encoder-decoder design for improved generalization performance and localization accuracy. We explore various descriptors such as frame-level VGG, segment-level I3D, RCNN-based object, etc. as node descriptors to enable action segmentation based on joint inference over comprehensive contextual information. We show results on CAD120 (which provides pre-computed node features and edge weights for fair performance comparison across algorithms) as well as a more complex real-world activity dataset, Charades. Our Stacked-STGCN in general achieves 4.1% performance improvement over the best reported results in F1 score on CAD120 and 1.3% in mAP on Charades using VGG features.
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image synthesis problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without understanding temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a novel video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generator and discriminator architectures, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our approach to future video prediction, outperforming several state-of-the-art competing systems.
Automatically describing a video with natural language is regarded as a fundamental challenge in computer vision. The problem nevertheless is not trivial especially when a video contains multiple events to be worthy of mention, which often happens in real videos. A valid question is how to temporally localize and then describe events, which is known as "dense video captioning." In this paper, we present a novel framework for dense video captioning that unifies the localization of temporal event proposals and sentence generation of each proposal, by jointly training them in an end-to-end manner. To combine these two worlds, we integrate a new design, namely descriptiveness regression, into a single shot detection structure to infer the descriptive complexity of each detected proposal via sentence generation. This in turn adjusts the temporal locations of each event proposal. Our model differs from existing dense video captioning methods since we propose a joint and global optimization of detection and captioning, and the framework uniquely capitalizes on an attribute-augmented video captioning architecture. Extensive experiments are conducted on ActivityNet Captions dataset and our framework shows clear improvements when compared to the state-of-the-art techniques. More remarkably, we obtain a new record: METEOR of 12.96% on ActivityNet Captions official test set.
One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.
In this paper, a new video classification methodology is proposed which can be applied in both first and third person videos. The main idea behind the proposed strategy is to capture complementary information of appearance and motion efficiently by performing two independent streams on the videos. The first stream is aimed to capture long-term motions from shorter ones by keeping track of how elements in optical flow images have changed over time. Optical flow images are described by pre-trained networks that have been trained on large scale image datasets. A set of multi-channel time series are obtained by aligning descriptions beside each other. For extracting motion features from these time series, PoT representation method plus a novel pooling operator is followed due to several advantages. The second stream is accomplished to extract appearance features which are vital in the case of video classification. The proposed method has been evaluated on both first and third-person datasets and results present that the proposed methodology reaches the state of the art successfully.