亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing maturity and scale of quantum hardware and its integration into HPC systems, there is a need to develop robust techniques for developing, characterizing, and benchmarking quantum-HPC applications and middleware systems. This requires a better understanding of interaction, coupling, and common execution patterns between quantum and classical workload tasks and components. This paper identifies six quantum-HPC execution motifs - recurring execution patterns characterized by distinct coupling and interaction modes. These motifs provide the basis for a suite of quantum mini-apps - simplified application prototypes that encapsulate essential characteristics of production systems. To support these developments, we introduce a mini-app framework that offers the necessary abstractions for creating and executing mini-apps across heterogeneous quantum-HPC infrastructure, making it a valuable tool for performance characterizations and middleware development.

相關內容

International Middleware會議是討論中間件設計、構造和使用方面的重要創新和最新進展的論壇。中間件是位于應用程序和底層平臺(操作系統;數據庫;硬件)之間的分布式系統軟件,和/或將分布式應用程序、數據庫或設備連接在一起。它的主要作用是協調和實現不同層或組件之間的通信,同時將分布的大部分復雜性隔離為一個單一的、經過充分測試和理解的系統抽象。 官網鏈接: · motivation · AI · 可辨認的 · Copilot ·
2024 年 6 月 25 日

AI assistance tools such as ChatGPT, Copilot, and Gemini have dramatically impacted the nature of software development in recent years. Numerous studies have studied the positive benefits that practitioners have achieved from using these tools in their work. While there is a growing body of knowledge regarding the usability aspects of leveraging AI tools, we still lack concrete details on the issues that organizations and practitioners need to consider should they want to explore increasing adoption or use of AI tools. In this study, we conducted a mixed methods study involving interviews with 26 industry practitioners and 395 survey respondents. We found that there are several motives and challenges that impact individuals and organizations and developed a theory of AI Tool Adoption. For example, we found creating a culture of sharing of AI best practices and tips as a key motive for practitioners' adopting and using AI tools. In total, we identified 2 individual motives, 4 individual challenges, 3 organizational motives, and 3 organizational challenges, and 3 interleaved relationships. The 3 interleaved relationships act in a push-pull manner where motives pull practitioners to increase the use of AI tools and challenges push practitioners away from using AI tools.

Hybrid dynamical systems with nonlinear dynamics are one of the most general modeling tools for representing robotic systems, especially contact-rich systems. However, providing guarantees regarding the safety or performance of nonlinear hybrid systems remains a challenging problem because it requires simultaneous reasoning about continuous state evolution and discrete mode switching. In this work, we address this problem by extending classical Hamilton-Jacobi (HJ) reachability analysis, a formal verification method for continuous-time nonlinear dynamical systems, to hybrid dynamical systems. We characterize the reachable sets for hybrid systems through a generalized value function defined over discrete and continuous states of the hybrid system. We also provide a numerical algorithm to compute this value function and obtain the reachable set. Our framework can compute reachable sets for hybrid systems consisting of multiple discrete modes, each with its own set of nonlinear continuous dynamics, discrete transitions that can be directly commanded or forced by a discrete control input, while still accounting for control bounds and adversarial disturbances in the state evolution. Along with the reachable set, the proposed framework also provides an optimal continuous and discrete controller to ensure system safety. We demonstrate our framework in several simulation case studies, as well as on a real-world testbed to solve the optimal mode planning problem for a quadruped with multiple gaits.

While the methodological rigor of computing research has improved considerably in the past two decades, quantitative software engineering research is hampered by immature measures and inattention to theory. Measurement-the principled assignment of numbers to phenomena-is intrinsically difficult because observation is predicated upon not only theoretical concepts but also the values and perspective of the research. Despite several previous attempts to raise awareness of more sophisticated approaches to measurement and the importance of quantitatively assessing reliability and validity, measurement issues continue to be widely ignored. The reasons are unknown, but differences in typical engineering and computer science graduate training programs (compared to psychology and management, for example) are involved. This chapter therefore reviews key concepts in the science of measurement and applies them to software engineering research. A series of exercises for applying important measurement concepts to the reader's research are included, and a sample dataset for the reader to try some of the statistical procedures mentioned is provided.

To reduce the carbon footprint of computing and stabilize electricity grids, there is an increasing focus on approaches that align the power usage of IT infrastructure with the availability of clean energy. Unfortunately, research on energy-aware and carbon-aware applications, as well as the interfaces between computing and energy systems, remains complex due to the scarcity of available testing environments. To this day, almost all new approaches are evaluated on custom simulation testbeds, which leads to repeated development efforts and limited comparability of results. In this paper, we present Vessim, a co-simulation environment for testing applications and computing systems that interact with their energy systems. Our testbed connects domain-specific simulators for renewable power generation and energy storage, and enables users to implement interfaces to integrate real systems through software and hardware-in-the-loop simulation. Vessim offers an easy-to-use interface, is extendable to new simulators, and provides direct access to historical datasets. We aim to not only accelerate research in carbon-aware computing but also facilitate development and operation, as in continuous testing or digital twins. Vessim is publicly available: //github.com/dos-group/vessim.

With the proliferation of domain-specific models, model merging has emerged as a set of techniques that combine the capabilities of multiple models into one that can multitask without the cost of additional training. In this paper, we propose a new model merging technique, Drop and rEscaLe via sampLing with mAgnitude (DELLA-Merging), that employs a novel pruning technique, MAGPRUNE, which shows significant advantages over DARE and TIES. MAGPRUNE first ranks the parameters in order of their magnitude and assigns higher dropout probabilities (p) to parameters with lower ranks corresponding to lower magnitudes. To approximate the original embeddings, MAGPRUNE employs a rescaling operation on the parameters that survive the random dropping by 1/(1 - p). On three different expert models considered for merging (LM, Math, Code) and corresponding benchmark datasets (AlpacaEval, GSM8K, MBPP), DELLA shows an average improvement of 2.4 points over baseline methods employing delta parameter pruning (an improvement of 3.6 points over TIES, 1.2 points over DARE), and 11.1 points over the no-pruning baseline (TA). We release the source code at: //github.com/declare-lab/della.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

北京阿比特科技有限公司