亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dense retrieval has become the new paradigm in passage retrieval. Despite its effectiveness on typo-free queries, it is not robust when dealing with queries that contain typos. Current works on improving the typo-robustness of dense retrievers combine (i) data augmentation to obtain the typoed queries during training time with (ii) additional robustifying subtasks that aim to align the original, typo-free queries with their typoed variants. Even though multiple typoed variants are available as positive samples per query, some methods assume a single positive sample and a set of negative ones per anchor and tackle the robustifying subtask with contrastive learning; therefore, making insufficient use of the multiple positives (typoed queries). In contrast, in this work, we argue that all available positives can be used at the same time and employ contrastive learning that supports multiple positives (multi-positive). Experimental results on two datasets show that our proposed approach of leveraging all positives simultaneously and employing multi-positive contrastive learning on the robustifying subtask yields improvements in robustness against using contrastive learning with a single positive.

相關內容

Bayes' rule describes how to infer posterior beliefs about latent variables given observations, and inference is a critical step in learning algorithms for latent variable models (LVMs). Although there are exact algorithms for inference and learning for certain LVMs such as linear Gaussian models and mixture models, researchers must typically develop approximate inference and learning algorithms when applying novel LVMs. In this paper we study the line that separates LVMs that rely on approximation schemes from those that do not, and develop a general theory of exponential family, latent variable models for which inference and learning may be implemented exactly. Firstly, under mild assumptions about the exponential family form of a given LVM, we derive necessary and sufficient conditions under which the LVM prior is in the same exponential family as its posterior, such that the prior is conjugate to the posterior. We show that all models that satisfy these conditions are constrained forms of a particular class of exponential family graphical model. We then derive general inference and learning algorithms, and demonstrate them on a variety of example models. Finally, we show how to compose our models into graphical models that retain tractable inference and learning. In addition to our theoretical work, we have implemented our algorithms in a collection of libraries with which we provide numerous demonstrations of our theory, and with which researchers may apply our theory in novel statistical settings.

We provide a general condition under which e-variables in the form of a simple-vs.-simple likelihood ratio exist when the null hypothesis is a composite, multivariate exponential family. Such `simple' e-variables are easy to compute and expected-log-optimal with respect to any stopping time. Simple e-variables were previously only known to exist in quite specific settings, but we offer a unifying theorem on their existence for testing exponential families. We start with a simple alternative $Q$ and a regular exponential family null. Together these induce a second exponential family ${\cal Q}$ containing $Q$, with the same sufficient statistic as the null. Our theorem shows that simple e-variables exist whenever the covariance matrices of ${\cal Q}$ and the null are in a certain relation. Examples in which this relation holds include some $k$-sample tests, Gaussian location- and scale tests, and tests for more general classes of natural exponential families.

The growth of social networks makes toxic content spread rapidly. Hate speech detection is a task to help decrease the number of harmful comments. With the diversity in the hate speech created by users, it is necessary to interpret the hate speech besides detecting it. Hence, we propose a methodology to construct a system for targeted hate speech detection from online streaming texts from social media. We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts. The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate. There are 5 targets in the dataset, and each target is labeled with the corresponding level manually by humans with strict annotation guidelines. The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level. Then, we construct a baseline for this task by combining the Bi-GRU-LSTM-CNN with the pre-trained language model to leverage the power of text representation of BERTology. Finally, we suggest a methodology to integrate the baseline model for targeted hate speech detection into the online streaming system for practical application in preventing hateful and offensive content on social media.

To overcome the sim-to-real gap in reinforcement learning (RL), learned policies must maintain robustness against environmental uncertainties. While robust RL has been widely studied in single-agent regimes, in multi-agent environments, the problem remains understudied -- despite the fact that the problems posed by environmental uncertainties are often exacerbated by strategic interactions. This work focuses on learning in distributionally robust Markov games (RMGs), a robust variant of standard Markov games, wherein each agent aims to learn a policy that maximizes its own worst-case performance when the deployed environment deviates within its own prescribed uncertainty set. This results in a set of robust equilibrium strategies for all agents that align with classic notions of game-theoretic equilibria. Assuming a non-adaptive sampling mechanism from a generative model, we propose a sample-efficient model-based algorithm (DRNVI) with finite-sample complexity guarantees for learning robust variants of various notions of game-theoretic equilibria. We also establish an information-theoretic lower bound for solving RMGs, which confirms the near-optimal sample complexity of DRNVI with respect to problem-dependent factors such as the size of the state space, the target accuracy, and the horizon length.

Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at //github.com/xiasong0501/DRS.

Bayesian inference and the use of posterior or posterior predictive probabilities for decision making have become increasingly popular in clinical trials. The current practice in Bayesian clinical trials relies on a hybrid Bayesian-frequentist approach where the design and decision criteria are assessed with respect to frequentist operating characteristics such as power and type I error rate conditioning on a given set of parameters. These operating characteristics are commonly obtained via simulation studies. The utility of Bayesian measures, such as ``assurance", that incorporate uncertainty about model parameters in estimating the probabilities of various decisions in trials has been demonstrated recently. However, the computational burden remains an obstacle toward wider use of such criteria. In this article, we propose methodology which utilizes large sample theory of the posterior distribution to define parametric models for the sampling distribution of the posterior summaries used for decision making. The parameters of these models are estimated using a small number of simulation scenarios, thereby refining these models to capture the sampling distribution for small to moderate sample size. The proposed approach toward the assessment of conditional and marginal operating characteristics and sample size determination can be considered as simulation-assisted rather than simulation-based. It enables formal incorporation of uncertainty about the trial assumptions via a design prior and significantly reduces the computational burden for the design of Bayesian trials in general.

Capability ontologies are increasingly used to model functionalities of systems or machines. The creation of such ontological models with all properties and constraints of capabilities is very complex and can only be done by ontology experts. However, Large Language Models (LLMs) have shown that they can generate machine-interpretable models from natural language text input and thus support engineers / ontology experts. Therefore, this paper investigates how LLMs can be used to create capability ontologies. We present a study with a series of experiments in which capabilities with varying complexities are generated using different prompting techniques and with different LLMs. Errors in the generated ontologies are recorded and compared. To analyze the quality of the generated ontologies, a semi-automated approach based on RDF syntax checking, OWL reasoning, and SHACL constraints is used. The results of this study are very promising because even for complex capabilities, the generated ontologies are almost free of errors.

Test smells can pose difficulties during testing activities, such as poor maintainability, non-deterministic behavior, and incomplete verification. Existing research has extensively addressed test smells in automated software tests but little attention has been given to smells in natural language tests. While some research has identified and catalogued such smells, there is a lack of systematic approaches for their removal. Consequently, there is also a lack of tools to automatically identify and remove natural language test smells. This paper introduces a catalog of transformations designed to remove seven natural language test smells and a companion tool implemented using Natural Language Processing (NLP) techniques. Our work aims to enhance the quality and reliability of natural language tests during software development. The research employs a two-fold empirical strategy to evaluate its contributions. First, a survey involving 15 software testing professionals assesses the acceptance and usefulness of the catalog's transformations. Second, an empirical study evaluates our tool to remove natural language test smells by analyzing a sample of real-practice tests from the Ubuntu OS. The results indicate that software testing professionals find the transformations valuable. Additionally, the automated tool demonstrates a good level of precision, as evidenced by a F-Measure rate of 83.70%

With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司