[Context] Applying design principles has long been acknowledged as beneficial for understanding and maintainability in traditional software projects. These benefits may similarly hold for Machine Learning (ML) projects, which involve iterative experimentation with data, models, and algorithms. However, ML components are often developed by data scientists with diverse educational backgrounds, potentially resulting in code that doesn't adhere to software design best practices. [Goal] In order to better understand this phenomenon, we investigated the impact of the SOLID design principles on ML code understanding. [Method] We conducted a controlled experiment with three independent trials involving 100 data scientists. We restructured real industrial ML code that did not use SOLID principles. Within each trial, one group was presented with the original ML code, while the other was presented with ML code incorporating SOLID principles. Participants of both groups were asked to analyze the code and fill out a questionnaire that included both open-ended and closed-ended questions on their understanding. [Results] The study results provide statistically significant evidence that the adoption of the SOLID design principles can improve code understanding within the realm of ML projects. [Conclusion] We put forward that software engineering design principles should be spread within the data science community and considered for enhancing the maintainability of ML code.
Large language models (LLMs) have achieved great success in many fields, and recent works have studied exploring LLMs for graph discriminative tasks such as node classification. However, the abilities of LLMs for graph generation remain unexplored in the literature. Graph generation requires the LLM to generate graphs with given properties, which has valuable real-world applications such as drug discovery, while tends to be more challenging. In this paper, we propose LLM4GraphGen to explore the ability of LLMs for graph generation with systematical task designs and extensive experiments. Specifically, we propose several tasks tailored with comprehensive experiments to address key questions regarding LLMs' understanding of different graph structure rules, their ability to capture structural type distributions, and their utilization of domain knowledge for property-based graph generation. Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks, including rule-based and distribution-based generation. We also observe that popular prompting methods, such as few-shot and chain-of-thought prompting, do not consistently enhance performance. Besides, LLMs show potential in generating molecules with specific properties. These findings may serve as foundations for designing good LLMs based models for graph generation and provide valuable insights and further research.
Predictions of opaque black-box systems are frequently deployed in high-stakes applications such as healthcare. For such applications, it is crucial to assess how models handle samples beyond the domain of training data. While several metrics and tests exist to detect out-of-distribution (OoD) data from in-distribution (InD) data to a deep neural network (DNN), their performance varies significantly across datasets, models, and tasks, which limits their practical use. In this paper, we propose a hypothesis-driven approach to quantify whether a new sample is InD or OoD. Given a trained DNN and some input, we first feed the input through the DNN and compute an ensemble of OoD metrics, which we term latent responses. We then formulate the OoD detection problem as a hypothesis test between latent responses of different groups, and use permutation-based resampling to infer the significance of the observed latent responses under a null hypothesis. We adapt our method to detect an unseen sample of bacteria to a trained deep learning model, and show that it reveals interpretable differences between InD and OoD latent responses. Our work has implications for systematic novelty detection and informed decision-making from classifiers trained on a subset of labels.
Recent studies have demonstrated the emerging capabilities of foundation models like ChatGPT in several fields, including affective computing. However, accessing these emerging capabilities is facilitated through prompt engineering. Despite the existence of some prompting techniques, the field is still rapidly evolving and many prompting ideas still require investigation. In this work, we introduce a method to evaluate and investigate the sensitivity of the performance of foundation models based on different prompts or generation parameters. We perform our evaluation on ChatGPT within the scope of affective computing on three major problems, namely sentiment analysis, toxicity detection, and sarcasm detection. First, we carry out a sensitivity analysis on pivotal parameters in auto-regressive text generation, specifically the temperature parameter $T$ and the top-$p$ parameter in Nucleus sampling, dictating how conservative or creative the model should be during generation. Furthermore, we explore the efficacy of several prompting ideas, where we explore how giving different incentives or structures affect the performance. Our evaluation takes into consideration performance measures on the affective computing tasks, and the effectiveness of the model to follow the stated instructions, hence generating easy-to-parse responses to be smoothly used in downstream applications.
Recent research has begun to examine the potential of automatically finding and fixing accessibility issues that manifest in software. However, while recent work makes important progress, it has generally been skewed toward identifying issues that affect users with certain disabilities, such as those with visual or hearing impairments. However, there are other groups of users with different types of disabilities that also need software tooling support to improve their experience. As such, this paper aims to automatically identify accessibility issues that affect users with motor-impairments. To move toward this goal, this paper introduces a novel approach, called MotorEase, capable of identifying accessibility issues in mobile app UIs that impact motor-impaired users. Motor-impaired users often have limited ability to interact with touch-based devices, and instead may make use of a switch or other assistive mechanism -- hence UIs must be designed to support both limited touch gestures and the use of assistive devices. MotorEase adapts computer vision and text processing techniques to enable a semantic understanding of app UI screens, enabling the detection of violations related to four popular, previously unexplored UI design guidelines that support motor-impaired users, including: (i) visual touch target size, (ii) expanding sections, (iii) persisting elements, and (iv) adjacent icon visual distance. We evaluate MotorEase on a newly derived benchmark, called MotorCheck, that contains 555 manually annotated examples of violations to the above accessibility guidelines, across 1599 screens collected from 70 applications via a mobile app testing tool. Our experiments illustrate that MotorEase is able to identify violations with an average accuracy of ~90%, and a false positive rate of less than 9%, outperforming baseline techniques.
With fact-checking by professionals being difficult to scale on social media, algorithmic techniques have been considered. However, it is uncertain how the public may react to labels by automated fact-checkers. In this study, we investigate the use of automated warning labels derived from misinformation detection literature and investigate their effects on three forms of post engagement. Focusing on political posts, we also consider how partisanship affects engagement. In a two-phases within-subjects experiment with 200 participants, we found that the generic warnings suppressed intents to comment on and share posts, but not on the intent to like them. Furthermore, when different reasons for the labels were provided, their effects on post engagement were inconsistent, suggesting that the reasons could have undesirably motivated engagement instead. Partisanship effects were observed across the labels with higher engagement for politically congruent posts. We discuss the implications on the design and use of automated warning labels.
This article presents a comprehensive analysis of the different tests proposed in the recent ChildCI framework, proving its potential for generating a better understanding of children's neuromotor and cognitive development along time, as well as their possible application in other research areas such as e-Health and e-Learning. In particular, we propose a set of over 100 global features related to motor and cognitive aspects of the children interaction with mobile devices, some of them collected and adapted from the literature. Furthermore, we analyse the robustness and discriminative power of the proposed feature set including experimental results for the task of children age group detection based on their motor and cognitive behaviours. Two different scenarios are considered in this study: i) single-test scenario, and ii) multiple-test scenario. Results over 93% accuracy are achieved using the publicly available ChildCIdb_v1 database (over 400 children from 18 months to 8 years old), proving the high correlation of children's age with the way they interact with mobile devices.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.
Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.