The generic text preprocessing pipeline, comprising Tokenisation, Normalisation, Stop Words Removal, and Stemming/Lemmatisation, has been implemented in many ontology matching (OM) systems. However, the lack of standardisation in text preprocessing creates diversity in mapping results. In this paper, we investigate the effect of the text preprocessing pipeline on OM tasks at syntactic levels. Our experiments on 8 Ontology Alignment Evaluation Initiative (OAEI) track repositories with 49 distinct alignments indicate: (1) Tokenisation and Normalisation are currently more effective than Stop Words Removal and Stemming/Lemmatisation; and (2) The selection of Lemmatisation and Stemming is task-specific. We recommend standalone Lemmatisation or Stemming with post-hoc corrections. We find that (3) Porter Stemmer and Snowball Stemmer perform better than Lancaster Stemmer; and that (4) Part-of-Speech (POS) Tagging does not help Lemmatisation. To repair less effective Stop Words Removal and Stemming/Lemmatisation used in OM tasks, we propose a novel context-based pipeline repair approach that significantly improves matching correctness and overall matching performance. We also discuss the use of text preprocessing pipeline in the new era of large language models (LLMs).
Accurately describing images with text is a foundation of explainable AI. Vision-Language Models (VLMs) like CLIP have recently addressed this by aligning images and texts in a shared embedding space, expressing semantic similarities between vision and language embeddings. VLM classification can be improved with descriptions generated by Large Language Models (LLMs). However, it is difficult to determine the contribution of actual description semantics, as the performance gain may also stem from a semantic-agnostic ensembling effect, where multiple modified text prompts act as a noisy test-time augmentation for the original one. We propose an alternative evaluation scenario to decide if a performance boost of LLM-generated descriptions is caused by such a noise augmentation effect or rather by genuine description semantics. The proposed scenario avoids noisy test-time augmentation and ensures that genuine, distinctive descriptions cause the performance boost. Furthermore, we propose a training-free method for selecting discriminative descriptions that work independently of classname-ensembling effects. Our approach identifies descriptions that effectively differentiate classes within a local CLIP label neighborhood, improving classification accuracy across seven datasets. Additionally, we provide insights into the explainability of description-based image classification with VLMs.
Connected component (CC) is a proper text shape representation that aligns with human reading intuition. However, CC-based text detection methods have recently faced a developmental bottleneck that their time-consuming post-processing is difficult to eliminate. To address this issue, we introduce an explicit relational reasoning network (ERRNet) to elegantly model the component relationships without post-processing. Concretely, we first represent each text instance as multiple ordered text components, and then treat these components as objects in sequential movement. In this way, scene text detection can be innovatively viewed as a tracking problem. From this perspective, we design an end-to-end tracking decoder to achieve a CC-based method dispensing with post-processing entirely. Additionally, we observe that there is an inconsistency between classification confidence and localization quality, so we propose a Polygon Monte-Carlo method to quickly and accurately evaluate the localization quality. Based on this, we introduce a position-supervised classification loss to guide the task-aligned learning of ERRNet. Experiments on challenging benchmarks demonstrate the effectiveness of our ERRNet. It consistently achieves state-of-the-art accuracy while holding highly competitive inference speed.
The Church Problem asks for the construction of a procedure which, given a logical specification A(I,O) between input omega-strings I and output omega-strings O, determines whether there exists an operator F that implements the specification in the sense that A(I, F(I)) holds for all inputs I. Buchi and Landweber provided a procedure to solve the Church problem for MSO specifications and operators computable by finite-state automata. We investigate a generalization of the Church synthesis problem to the continuous time domain of the non-negative reals. We show that in the continuous time domain there are phenomena which are very different from the canonical discrete time domain of the natural numbers.
Stance detection (SD) identifies the text position towards a target, typically labeled as favor, against, or none. We introduce Open-Target Stance Detection (OTSD), the most realistic task where targets are neither seen during training nor provided as input. We evaluate Large Language Models (LLMs) from GPT, Gemini, Llama, and Mistral families, comparing their performance to the only existing work, Target-Stance Extraction (TSE), which benefits from predefined targets. Unlike TSE, OTSD removes the dependency of a predefined list, making target generation and evaluation more challenging. We also provide a metric for evaluating target quality that correlates well with human judgment. Our experiments reveal that LLMs outperform TSE in target generation, both when the real target is explicitly and not explicitly mentioned in the text. Similarly, LLMs overall surpass TSE in stance detection for both explicit and non-explicit cases. However, LLMs struggle in both target generation and stance detection when the target is not explicit.
We introduce romanization encoding for script-heavy languages to optimize multilingual and code-switching Automatic Speech Recognition (ASR) systems. By adopting romanization encoding alongside a balanced concatenated tokenizer within a FastConformer-RNNT framework equipped with a Roman2Char module, we significantly reduce vocabulary and output dimensions, enabling larger training batches and reduced memory consumption. Our method decouples acoustic modeling and language modeling, enhancing the flexibility and adaptability of the system. In our study, applying this method to Mandarin-English ASR resulted in a remarkable 63.51% vocabulary reduction and notable performance gains of 13.72% and 15.03% on SEAME code-switching benchmarks. Ablation studies on Mandarin-Korean and Mandarin-Japanese highlight our method's strong capability to address the complexities of other script-heavy languages, paving the way for more versatile and effective multilingual ASR systems.
With the advent of large language models (LLMs), there is a growing interest in applying LLMs to scientific tasks. In this work, we conduct an experimental study to explore applicability of LLMs for configuring, annotating, translating, explaining, and generating scientific workflows. We use 5 different workflow specific experiments and evaluate several open- and closed-source language models using state-of-the-art workflow systems. Our studies reveal that LLMs often struggle with workflow related tasks due to their lack of knowledge of scientific workflows. We further observe that the performance of LLMs varies across experiments and workflow systems. Our findings can help workflow developers and users in understanding LLMs capabilities in scientific workflows, and motivate further research applying LLMs to workflows.
2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.
Graph Neural Networks (GNNs) draw their strength from explicitly modeling the topological information of structured data. However, existing GNNs suffer from limited capability in capturing the hierarchical graph representation which plays an important role in graph classification. In this paper, we innovatively propose hierarchical graph capsule network (HGCN) that can jointly learn node embeddings and extract graph hierarchies. Specifically, disentangled graph capsules are established by identifying heterogeneous factors underlying each node, such that their instantiation parameters represent different properties of the same entity. To learn the hierarchical representation, HGCN characterizes the part-whole relationship between lower-level capsules (part) and higher-level capsules (whole) by explicitly considering the structure information among the parts. Experimental studies demonstrate the effectiveness of HGCN and the contribution of each component.