Mechanistic interpretability (MI) aims to understand AI models by reverse-engineering the exact algorithms neural networks learn. Most works in MI so far have studied behaviors and capabilities that are trivial and token-aligned. However, most capabilities are not that trivial, which advocates for the study of hidden representations inside these networks as the unit of analysis. We do a literature review, formalize representations for features and behaviors, highlight their importance and evaluation, and perform some basic exploration in the mechanistic interpretability of representations. With discussion and exploratory results, we justify our position that studying representations is an important and under-studied field, and that currently established methods in MI are not sufficient to understand representations, thus pushing for the research community to work toward new frameworks for studying representations.
Trajectory length stands as a crucial hyperparameter within reinforcement learning (RL) algorithms, significantly contributing to the sample inefficiency in robotics applications. Motivated by the pivotal role trajectory length plays in the training process, we introduce Ada-NAV, a novel adaptive trajectory length scheme designed to enhance the training sample efficiency of RL algorithms in robotic navigation tasks. Unlike traditional approaches that treat trajectory length as a fixed hyperparameter, we propose to dynamically adjust it based on the entropy of the underlying navigation policy. Interestingly, Ada-NAV can be applied to both existing on-policy and off-policy RL methods, which we demonstrate by empirically validating its efficacy on three popular RL methods: REINFORCE, Proximal Policy Optimization (PPO), and Soft Actor-Critic (SAC). We demonstrate through simulated and real-world robotic experiments that Ada-NAV outperforms conventional methods that employ constant or randomly sampled trajectory lengths. Specifically, for a fixed sample budget, Ada-NAV achieves an 18\% increase in navigation success rate, a 20-38\% reduction in navigation path length, and a 9.32\% decrease in elevation costs. Furthermore, we showcase the versatility of Ada-NAV by integrating it with the Clearpath Husky robot, illustrating its applicability in complex outdoor environments.
Traditional approaches in physics-based motion generation, centered around imitation learning and reward shaping, often struggle to adapt to new scenarios. To tackle this limitation, we propose AnySkill, a novel hierarchical method that learns physically plausible interactions following open-vocabulary instructions. Our approach begins by developing a set of atomic actions via a low-level controller trained via imitation learning. Upon receiving an open-vocabulary textual instruction, AnySkill employs a high-level policy that selects and integrates these atomic actions to maximize the CLIP similarity between the agent's rendered images and the text. An important feature of our method is the use of image-based rewards for the high-level policy, which allows the agent to learn interactions with objects without manual reward engineering. We demonstrate AnySkill's capability to generate realistic and natural motion sequences in response to unseen instructions of varying lengths, marking it the first method capable of open-vocabulary physical skill learning for interactive humanoid agents.
Data science pipelines commonly utilize dataframe and array operations for tasks such as data preprocessing, analysis, and machine learning. The most popular tools for these tasks are pandas and NumPy. However, these tools are limited to executing on a single node, making them unsuitable for processing large-scale data. Several systems have attempted to distribute data science applications to clusters while maintaining interfaces similar to single-node libraries, enabling data scientists to scale their workloads without significant effort. However, existing systems often struggle with processing large datasets due to Out-of-Memory (OOM) problems caused by poor data partitioning. To overcome these challenges, we develop Xorbits, a high-performance, scalable data science framework specifically designed to distribute data science workloads across clusters while retaining familiar APIs. The key differentiator of Xorbits is its ability to dynamically switch between graph construction and graph execution. Xorbits has been successfully deployed in production environments with up to 5k CPU cores. Its applications span various domains, including user behavior analysis and recommendation systems in the e-commerce sector, as well as credit assessment and risk management in the finance industry. Users can easily scale their data science workloads by simply changing the import line of their pandas and NumPy code. Our experiments demonstrate that Xorbits can effectively process very large datasets without encountering OOM or data-skewing problems. Over the fastest state-of-the-art solutions, Xorbits achieves an impressive 2.66* speedup on average. In terms of API coverage, Xorbits attains a compatibility rate of 96.7%, surpassing the fastest framework by an impressive margin of 60 percentage points. Xorbits is available at //github.com/xorbitsai/xorbits.
Reliable multimodal sensor fusion algorithms re- quire accurate spatiotemporal calibration. Recently, targetless calibration techniques based on implicit neural representations have proven to provide precise and robust results. Nevertheless, such methods are inherently slow to train given the high compu- tational overhead caused by the large number of sampled points required for volume rendering. With the recent introduction of 3D Gaussian Splatting as a faster alternative to implicit representation methods, we propose to leverage this new ren- dering approach to achieve faster multi-sensor calibration. We introduce 3DGS-Calib, a new calibration method that relies on the speed and rendering accuracy of 3D Gaussian Splatting to achieve multimodal spatiotemporal calibration that is accurate, robust, and with a substantial speed-up compared to methods relying on implicit neural representations. We demonstrate the superiority of our proposal with experimental results on sequences from KITTI-360, a widely used driving dataset.
Deep Learning (DL) models have gained popularity in neuroimaging studies for predicting psychological behaviors, cognitive traits, and brain pathologies. However, these models can be biased by confounders such as age, sex, or imaging artifacts from the acquisition process. To address this, we introduce 'DeepRepViz', a two-part framework designed to identify confounders in DL model predictions. The first component is a visualization tool that can be used to qualitatively examine the final latent representation of the DL model. The second component is a metric called 'Con-score' that quantifies the confounder risk associated with a variable, using the final latent representation of the DL model. We demonstrate the effectiveness of the Con-score using a simple simulated setup by iteratively altering the strength of a simulated confounder and observing the corresponding change in the Con-score. Next, we validate the DeepRepViz framework on a large-scale neuroimaging dataset (n=12000) by performing three MRI-phenotype prediction tasks that include (a) predicting chronic alcohol users, (b) classifying participant sex, and (c) predicting performance speed on a cognitive task called 'trail making'. DeepRepViz identifies sex as a significant confounder in the DL model predicting chronic alcohol users (Con-score=0.35) and age as a confounder in the model predicting cognitive task performance (Con-score=0.3). In conclusion, the DeepRepViz framework provides a systematic approach to test for potential confounders such as age, sex, and imaging artifacts and improves the transparency of DL models for neuroimaging studies.
Researchers urge technology practitioners such as data scientists to consider the impacts and ethical implications of algorithmic decisions. However, unlike programming, statistics, and data management, discussion of ethical implications is rarely included in standard data science training. To begin to address this gap, we designed and tested a toolbox called the data ethics emergency drill (DEED) to help data science teams discuss and reflect on the ethical implications of their work. The DEED is a roleplay of a fictional ethical emergency scenario that is contextually situated in the team's specific workplace and applications. This paper outlines the DEED toolbox and describes three studies carried out with two different data science teams that iteratively shaped its design. Our findings show that practitioners can apply lessons learnt from the roleplay to real-life situations, and how the DEED opened up conversations around ethics and values.
Zeroth-order (ZO) optimization has become a popular technique for solving machine learning (ML) problems when first-order (FO) information is difficult or impossible to obtain. However, the scalability of ZO optimization remains an open problem: Its use has primarily been limited to relatively small-scale ML problems, such as sample-wise adversarial attack generation. To our best knowledge, no prior work has demonstrated the effectiveness of ZO optimization in training deep neural networks (DNNs) without a significant decrease in performance. To overcome this roadblock, we develop DeepZero, a principled ZO deep learning (DL) framework that can scale ZO optimization to DNN training from scratch through three primary innovations. First, we demonstrate the advantages of coordinatewise gradient estimation (CGE) over randomized vector-wise gradient estimation in training accuracy and computational efficiency. Second, we propose a sparsityinduced ZO training protocol that extends the model pruning methodology using only finite differences to explore and exploit the sparse DL prior in CGE. Third, we develop the methods of feature reuse and forward parallelization to advance the practical implementations of ZO training. Our extensive experiments show that DeepZero achieves state-of-the-art (SOTA) accuracy on ResNet-20 trained on CIFAR-10, approaching FO training performance for the first time. Furthermore, we show the practical utility of DeepZero in applications of certified adversarial defense and DL-based partial differential equation error correction, achieving 10-20% improvement over SOTA. We believe our results will inspire future research on scalable ZO optimization and contribute to advancing DL with black box. Codes are available at //github.com/OPTML-Group/DeepZero.
Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.