We tackle the problem of answering regular path queries over graph databases, while simultaneously returning the paths which witness our answers. We study this problem under the arbitrary, all-shortest, trail, and simple-path semantics, which are the common path matching semantics considered in the research literature, and are also prescribed by the upcoming ISO Graph Query Language (GQL) and SQL/PGQ standards. In the paper we present how the classical product construction from the theoretical literature on graph querying can be modified in order to allow returning paths. We then discuss how this approach can be implemented, both when the data resides in a classical B+ tree structure, and when it is assumed to be available in main memory via a compressed sparse row representation. Finally, we perform a detailed experimental study of different trade-offs these algorithms have over real world queries, and compare them with existing approaches.
The "Sum-Over-Paths" formalism is a way to symbolically manipulate linear maps that describe quantum systems, and is a tool that is used in formal verification of such systems. We give here a new set of rewrite rules for the formalism, and show that it is complete for "Toffoli-Hadamard", the simplest approximately universal fragment of quantum mechanics. We show that the rewriting is terminating, but not confluent (which is expected from the universality of the fragment). We do so using the connection between Sum-over-Paths and graphical language ZH-calculus, and also show how the axiomatisation translates into the latter. We provide generalisations of the presented rewrite rules, that can prove useful when trying to reduce terms in practice, and we show how to graphically make sense of these new rules. We show how to enrich the rewrite system to reach completeness for the dyadic fragments of quantum computation, used in particular in the Quantum Fourier Transform, and obtained by adding phase gates with dyadic multiples of $\pi$ to the Toffoli-Hadamard gate-set. Finally, we show how to perform sums and concatenation of arbitrary terms, something which is not native in a system designed for analysing gate-based quantum computation, but necessary when considering Hamiltonian-based quantum computation.
Gaussian graphical models are nowadays commonly applied to the comparison of groups sharing the same variables, by jointy learning their independence structures. We consider the case where there are exactly two dependent groups and the association structure is represented by a family of coloured Gaussian graphical models suited to deal with paired data problems. To learn the two dependent graphs, together with their across-graph association structure, we implement a fused graphical lasso penalty. We carry out a comprehensive analysis of this approach, with special attention to the role played by some relevant submodel classes. In this way, we provide a broad set of tools for the application of Gaussian graphical models to paired data problems. These include results useful for the specification of penalty values in order to obtain a path of lasso solutions and an ADMM algorithm that solves the fused graphical lasso optimization problem. Finally, we present an application of our method to cancer genomics where it is of interest to compare cancer cells with a control sample from histologically normal tissues adjacent to the tumor. All the methods described in this article are implemented in the $\texttt{R}$ package $\texttt{pdglasso}$ availabe at: //github.com/savranciati/pdglasso.
We present an intimate connection among the following fields: (a) distributed local algorithms: coming from the area of computer science, (b) finitary factors of iid processes: coming from the area of analysis of randomized processes, (c) descriptive combinatorics: coming from the area of combinatorics and measure theory. In particular, we study locally checkable labellings in grid graphs from all three perspectives. Most of our results are for the perspective (b) where we prove time hierarchy theorems akin to those known in the field (a) [Chang, Pettie FOCS 2017]. This approach that borrows techniques from the fields (a) and (c) implies a number of results about possible complexities of finitary factor solutions. Among others, it answers three open questions of [Holroyd et al. Annals of Prob. 2017] or the more general question of [Brandt et al. PODC 2017] who asked for a formal connection between the fields (a) and (b). In general, we hope that our treatment will help to view all three perspectives as a part of a common theory of locality, in which we follow the insightful paper of [Bernshteyn 2020+] .
We study a principal component analysis problem under the spiked Wishart model in which the structure in the signal is captured by a class of union-of-subspace models. This general class includes vanilla sparse PCA as well as its variants with graph sparsity. With the goal of studying these problems under a unified statistical and computational lens, we establish fundamental limits that depend on the geometry of the problem instance, and show that a natural projected power method exhibits local convergence to the statistically near-optimal neighborhood of the solution. We complement these results with end-to-end analyses of two important special cases given by path and tree sparsity in a general basis, showing initialization methods and matching evidence of computational hardness. Overall, our results indicate that several of the phenomena observed for vanilla sparse PCA extend in a natural fashion to its structured counterparts.
In this paper, we study the problem of secret language in NLP, where current language models (LMs) seem to have a hidden vocabulary that allows them to interpret absurd inputs as meaningful concepts. We investigate two research questions: ``Does the secret language phenomenon exist in different language models?'' and ``Does secret language depend on specific context?'' To answer these questions, we introduce a novel method named \textit{SecretFinding}, a gradient-based approach that can automatically discover secret languages in LMs. We conduct experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Our experimental results show that even when we replace the most important words with others that are semantically dissimilar to the original words in a sentence, LMs do not consider the new sentence semantically dissimilar to the original, as the output does not change with a high probability. This phenomenon holds true across the five models and five tasks and gives a positive answer to the first research question. As for the second research question, we find that the secret language discovered by \textit{SecretFinding} is quite general and could even be transferred to other models in the black-box settings, such as GPT-3 and ChatGPT. Finally, we discuss the causes of secret language, how to eliminate it, the potential connection to memorization, and ethical implications. Examples of secret language found by SecretFinding are available on //huggingface.co/spaces/anonymousauthors/ACL23_SecretLanguage.
Machine learning models are often personalized with categorical attributes that are protected, sensitive, self-reported, or costly to acquire. In this work, we show models that are personalized with group attributes can reduce performance at a group level. We propose formal conditions to ensure the "fair use" of group attributes in prediction tasks by training one additional model -- i.e., collective preference guarantees to ensure that each group who provides personal data will receive a tailored gain in performance in return. We present sufficient conditions to ensure fair use in empirical risk minimization and characterize failure modes that lead to fair use violations due to standard practices in model development and deployment. We present a comprehensive empirical study of fair use in clinical prediction tasks. Our results demonstrate the prevalence of fair use violations in practice and illustrate simple interventions to mitigate their harm.
Recently Chen and Poor initiated the study of learning mixtures of linear dynamical systems. While linear dynamical systems already have wide-ranging applications in modeling time-series data, using mixture models can lead to a better fit or even a richer understanding of underlying subpopulations represented in the data. In this work we give a new approach to learning mixtures of linear dynamical systems that is based on tensor decompositions. As a result, our algorithm succeeds without strong separation conditions on the components, and can be used to compete with the Bayes optimal clustering of the trajectories. Moreover our algorithm works in the challenging partially-observed setting. Our starting point is the simple but powerful observation that the classic Ho-Kalman algorithm is a close relative of modern tensor decomposition methods for learning latent variable models. This gives us a playbook for how to extend it to work with more complicated generative models.
The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.
We consider the vulnerability of fairness-constrained learning to small amounts of malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and presented negative results showing there exist data distributions where for several fairness constraints, any proper learner will exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we show we can incur only a $\Theta(\alpha)$ loss in accuracy, where $\alpha$ is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an $O(\sqrt{\alpha})$ loss, and give a matching $\Omega(\sqrt{\alpha})$lower bound. In contrast, Konstantinov and Lampert (2021) showed for proper learners the loss in accuracy for both notions is $\Omega(1)$. The key technical novelty of our work is how randomization can bypass simple "tricks" an adversary can use to amplify his power. We also consider additional fairness notions including Equalized Odds and Calibration. For these fairness notions, the excess accuracy clusters into three natural regimes $O(\alpha)$,$O(\sqrt{\alpha})$ and $O(1)$. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec