In biomechanics, geometries representing complicated organic structures are consistently segmented from sparse volumetric data or morphed from template geometries resulting in initial overclosure between adjacent geometries. In FEA, these overclosures result in numerical instability and inaccuracy as part of contact analysis. Several techniques exist to fix overclosures, but most suffer from several drawbacks. This work introduces a novel automated algorithm in an iterative process to remove overclosure and create a desired minimum gap for 2D and 3D finite element models. The RBF Network algorithm was introduced by its four major steps to remove the initial overclosure. Additionally, the algorithm was validated using two test cases against conventional nodal adjustment. The first case compared the ability of each algorithm to remove differing levels of overclosure between two deformable muscles and the effects on mesh quality. The second case used a non-deformable femur and deformable distal femoral cartilage geometry with initial overclosure to test both algorithms and observe the effects on the resulting contact FEA. The RBF Network in the first case study was successfully able to remove all overclosures. In the second case, the nodal adjustment method failed to create a usable FEA model, while the RBF Network had no such issue. This work proposed an algorithm to remove initial overclosures prior to FEA that has improved performance over conventional nodal adjustment, especially in complicated situations and those involving 3D elements. The work can be included in existing FEA modeling workflows to improve FEA results in situations involving sparse volumetric segmentation and mesh morphing. This algorithm has been implemented in MATLAB, and the source code is publicly available to download at the following GitHub repository: //github.com/thor-andreassen/femors
Continuum robots have the potential to enable new applications in medicine, inspection, and countless other areas due to their unique shape, compliance, and size. Excellent progess has been made in the mechanical design and dynamic modelling of continuum robots, to the point that there are some canonical designs, although new concepts continue to be explored. In this paper, we turn to the problem of state estimation for continuum robots that can been modelled with the common Cosserat rod model. Sensing for continuum robots might comprise external camera observations, embedded tracking coils or strain gauges. We repurpose a Gaussian process (GP) regression approach to state estimation, initially developed for continuous-time trajectory estimation in $SE(3)$. In our case, the continuous variable is not time but arclength and we show how to estimate the continuous shape (and strain) of the robot (along with associated uncertainties) given discrete, noisy measurements of both pose and strain along the length. We demonstrate our approach quantitatively through simulations as well as through experiments. Our evaluations show that accurate and continuous estimates of a continuum robot's shape can be achieved, resulting in average end-effector errors between the estimated and ground truth shape as low as 3.5mm and 0.016$^\circ$ in simulation or 3.3mm and 0.035$^\circ$ for unloaded configurations and 6.2mm and 0.041$^\circ$ for loaded ones during experiments, when using discrete pose measurements.
Quantum queue-channels arise naturally in the context of buffering in quantum networks, wherein the noise suffered by the quantum states depends on the time spent waiting in the buffer. It has been shown that the upper-bound on the classical capacity of an additive queue-channel has a simple expression, and is achievable for the erasure and depolarizing channels [IEEE JSAIT, 1(2):432-444]. In this paper, we characterise the classical capacity for the class of unital qubit queue-channels, and show that a simple product (non-entangled) decoding strategy is capacity-achieving. As an intermediate result, we derive an explicit capacity achieving product decoding strategy for any i.i.d. unital qubit channel, which could be of independent interest. As an important special case, we also derive the capacity and optimal decoding strategies for a symmetric generalized amplitude damping (GAD) queue-channel. Our results provide useful insights towards designing practical quantum communication networks, and highlight the need to explicitly model the impact of buffering.
Spiking neural networks, also often referred to as the third generation of neural networks, carry the potential for a massive reduction in memory and energy consumption over traditional, second-generation neural networks. Inspired by the undisputed efficiency of the human brain, they introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware. To open the pathway toward engineering applications, we introduce this exciting technology in the context of continuum mechanics. However, the nature of spiking neural networks poses a challenge for regression problems, which frequently arise in the modeling of engineering sciences. To overcome this problem, a framework for regression using spiking neural networks is proposed. In particular, a network topology for decoding binary spike trains to real numbers is introduced, utilizing the membrane potential of spiking neurons. As the aim of this contribution is a concise introduction to this new methodology, several different spiking neural architectures, ranging from simple spiking feed-forward to complex spiking long short-term memory neural networks, are derived. Several numerical experiments directed towards regression of linear and nonlinear, history-dependent material models are carried out. A direct comparison with counterparts of traditional neural networks shows that the proposed framework is much more efficient while retaining precision and generalizability. All code has been made publicly available in the interest of reproducibility and to promote continued enhancement in this new domain.
Numerical methods for random parametric PDEs can greatly benefit from adaptive refinement schemes, in particular when functional approximations are computed as in stochastic Galerkin and stochastic collocations methods. This work is concerned with a non-intrusive generalization of the adaptive Galerkin FEM with residual based error estimation. It combines the non-intrusive character of a randomized least-squares method with the a posteriori error analysis of stochastic Galerkin methods. The proposed approach uses the Variational Monte Carlo method to obtain a quasi-optimal low-rank approximation of the Galerkin projection in a highly efficient hierarchical tensor format. We derive an adaptive refinement algorithm which is steered by a reliable error estimator. Opposite to stochastic Galerkin methods, the approach is easily applicable to a wide range of problems, enabling a fully automated adjustment of all discretization parameters. Benchmark examples with affine and (unbounded) lognormal coefficient fields illustrate the performance of the non-intrusive adaptive algorithm, showing best-in-class performance.
Recently cloud-based graph convolutional network (GCN) has demonstrated great success and potential in many privacy-sensitive applications such as personal healthcare and financial systems. Despite its high inference accuracy and performance on cloud, maintaining data privacy in GCN inference, which is of paramount importance to these practical applications, remains largely unexplored. In this paper, we take an initial attempt towards this and develop $\textit{CryptoGCN}$--a homomorphic encryption (HE) based GCN inference framework. A key to the success of our approach is to reduce the tremendous computational overhead for HE operations, which can be orders of magnitude higher than its counterparts in the plaintext space. To this end, we develop an approach that can effectively take advantage of the sparsity of matrix operations in GCN inference to significantly reduce the computational overhead. Specifically, we propose a novel AMA data formatting method and associated spatial convolution methods, which can exploit the complex graph structure and perform efficient matrix-matrix multiplication in HE computation and thus greatly reduce the HE operations. We also develop a co-optimization framework that can explore the trade offs among the accuracy, security level, and computational overhead by judicious pruning and polynomial approximation of activation module in GCNs. Based on the NTU-XVIEW skeleton joint dataset, i.e., the largest dataset evaluated homomorphically by far as we are aware of, our experimental results demonstrate that $\textit{CryptoGCN}$ outperforms state-of-the-art solutions in terms of the latency and number of homomorphic operations, i.e., achieving as much as a 3.10$\times$ speedup on latency and reduces the total Homomorphic Operation Count by 77.4\% with a small accuracy loss of 1-1.5$\%$.
Modern data-driven machine learning research that enables revolutionary advances in image analysis has now become a critical tool to redefine how skin lesions are documented, mapped, and tracked. We propose a 3D whole body imaging prototype to enable automated evaluation and mapping of skin lesions. A modular camera rig arranged in a cylindrical configuration is designed to automatically capture synchronised images from multiple angles for entire body scanning. We develop algorithms for 3D body image reconstruction, data processing and skin lesion detection based on deep convolutional neural networks. We also propose a customised, intuitive and flexible interface that allows the user to interact and collaborate with the machine to understand the data. The experimental results using synthetic and real images demonstrate the effectiveness of the proposed solution by providing multiple views of the target skin lesion, enabling further 3D geometry analysis. Skin lesions are identified as outliers which deserve more attention from a skin cancer physician. Our detector leverage expert annotated labels to learn representations of each lesion, while capturing the effects of anatomical variability. The time needed for recording skin information is reduced to just a few seconds, although about half an hour more is needed to process the capture information to high quality information. The proposed 3D whole body imaging system can be used by dermatological clinics, allowing for fast documentation of lesions, quick and accurate analysis of the entire body to detect suspicious lesions. Because of its automated examination, the method might be used for screening or epidemiological investigations. With shorted time required for recording high quality skin information, doctors could have more time and more detailed information to provide better quality treatment.
We present a system for collision-free control of a robot manipulator that uses only RGB views of the world. Perceptual input of a tabletop scene is provided by multiple images of an RGB camera (without depth) that is either handheld or mounted on the robot end effector. A NeRF-like process is used to reconstruct the 3D geometry of the scene, from which the Euclidean full signed distance function (ESDF) is computed. A model predictive control algorithm is then used to control the manipulator to reach a desired pose while avoiding obstacles in the ESDF. We show results on a real dataset collected and annotated in our lab.
Graph machine learning has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To tackle the challenge, automated graph machine learning, which aims at discovering the best hyper-parameter and neural architecture configuration for different graph tasks/data without manual design, is gaining an increasing number of attentions from the research community. In this paper, we extensively discuss automated graph machine approaches, covering hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We briefly overview existing libraries designed for either graph machine learning or automated machine learning respectively, and further in depth introduce AutoGL, our dedicated and the world's first open-source library for automated graph machine learning. Last but not least, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive discussion of approaches, libraries as well as directions for automated graph machine learning.
Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.