亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Likelihood-free inference methods typically make use of a distance between simulated and real data. A common example is the maximum mean discrepancy (MMD), which has previously been used for approximate Bayesian computation, minimum distance estimation, generalised Bayesian inference, and within the nonparametric learning framework. The MMD is commonly estimated at a root-$m$ rate, where $m$ is the number of simulated samples. This can lead to significant computational challenges since a large $m$ is required to obtain an accurate estimate, which is crucial for parameter estimation. In this paper, we propose a novel estimator for the MMD with significantly improved sample complexity. The estimator is particularly well suited for computationally expensive smooth simulators with low- to mid-dimensional inputs. This claim is supported through both theoretical results and an extensive simulation study on benchmark simulators.

相關內容

Physics-based covariance models provide a systematic way to construct covariance models that are consistent with the underlying physical laws in Gaussian process analysis. The unknown parameters in the covariance models can be estimated using maximum likelihood estimation, but direct construction of the covariance matrix and classical strategies of computing with it requires $n$ physical model runs, $n^2$ storage complexity, and $n^3$ computational complexity. To address such challenges, we propose to approximate the discretized covariance function using hierarchical matrices. By utilizing randomized range sketching for individual off-diagonal blocks, the construction process of the hierarchical covariance approximation requires $O(\log{n})$ physical model applications and the maximum likelihood computations require $O(n\log^2{n})$ effort per iteration. We propose a new approach to compute exactly the trace of products of hierarchical matrices which results in the expected Fischer information matrix being computable in $O(n\log^2{n})$ as well. The construction is totally matrix-free and the derivatives of the covariance matrix can then be approximated in the same hierarchical structure by differentiating the whole process. Numerical results are provided to demonstrate the effectiveness, accuracy, and efficiency of the proposed method for parameter estimations and uncertainty quantification.

Computing accurate splines of degree greater than three is still a challenging task in today's applications. In this type of interpolation, high-order derivatives are needed on the given mesh. As these derivatives are rarely known and are often not easy to approximate accurately, high-degree splines are difficult to obtain using standard approaches. In Beaudoin (1998), Beaudoin and Beauchemin (2003), and Pepin et al. (2019), a new method to compute spline approximations of low or high degree from equidistant interpolation nodes based on the discrete Fourier transform is analyzed. The accuracy of this method greatly depends on the accuracy of the boundary conditions. An algorithm for the computation of the boundary conditions can be found in Beaudoin (1998), and Beaudoin and Beauchemin (2003). However, this algorithm lacks robustness since the approximation of the boundary conditions is strongly dependant on the choice of $\theta$ arbitrary parameters, $\theta$ being the degree of the spline. The goal of this paper is therefore to propose two new robust algorithms, independent of arbitrary parameters, for the computation of the boundary conditions in order to obtain accurate splines of any degree. Numerical results will be presented to show the efficiency of these new approaches.

The log-logistic regression model is one of the most commonly used accelerated failure time (AFT) models in survival analysis, for which statistical inference methods are mainly established under the frequentist framework. Recently, Bayesian inference for log-logistic AFT models using Markov chain Monte Carlo (MCMC) techniques has also been widely developed. In this work, we develop an alternative approach to MCMC methods and infer the parameters of the log-logistic AFT model via a mean-field variational Bayes (VB) algorithm. A piece-wise approximation technique is embedded in deriving the update equations in the VB algorithm to achieve conjugacy. The proposed VB algorithm is evaluated and compared with typical frequentist inferences using simulated data under various scenarios, and a publicly available dataset is employed for illustration. We demonstrate that the proposed VB algorithm can achieve good estimation accuracy and is not sensitive to sample sizes, censoring rates, and prior information.

The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than $\pi$, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard $H^2$ elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by $H^2$ and $W^{1,p}$ estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz's argument due to the non-conformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the $W^{1,\infty}$ regularity estimate of the Poisson equation uniformly with respect to the perturbation.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

The linear regression model is widely used in the biomedical and social sciences as well as in policy and business research to adjust for covariates and estimate the average effects of treatments. Behind every causal inference endeavor there is at least a notion of a randomized experiment. However, in routine regression analyses in observational studies, it is unclear how well the adjustments made by regression approximate key features of randomization experiments, such as covariate balance, study representativeness, sample boundedness, and unweighted sampling. In this paper, we provide software to empirically address this question. In the new lmw package for R, we compute the implied linear model weights for average treatment effects and provide diagnostics for them. The weights are obtained as part of the design stage of the study; that is, without using outcome information. The implementation is general and applicable, for instance, in settings with instrumental variables and multi-valued treatments; in essence, in any situation where the linear model is the vehicle for adjustment and estimation of average treatment effects with discrete-valued interventions.

This paper deals with the problem of global parameter estimation of affine diffusions in $\mathbb{R}_+ \times \mathbb{R}^n$ denoted by $AD(1, n)$ where $n$ is a positive integer which is a subclass of affine diffusions introduced by Duffie et al in [14]. The $AD(1, n)$ model can be applied to the pricing of bond and stock options, which is illustrated for the Vasicek, Cox-Ingersoll-Ross and Heston models. Our first result is about the classification of $AD(1, n)$ processes according to the subcritical, critical and supercritical cases. Then, we give the stationarity and the ergodicity theorems of this model and we establish asymptotic properties for the maximum likelihood estimator in both subcritical and a special supercritical cases.

The Sinc approximation applied to double-exponentially decaying functions is referred to as the DE-Sinc approximation. This approximation has notably been utilized for many applications because of its high efficiency. The Sinc approximation's mesh size and truncation numbers should be optimally selected to avail its full performance. However, the usual formula has only been ``near-optimally'' selected because the optimal formula between the two cannot be expressed in terms of elementary functions. In this study, we propose two improved formulas. The first one is based on the concept by an earlier research that produced an improved selection formula for the double-exponential formula. The formula performed better than the usual one, but was still not optimal. As a second formula, we introduce a new parameter to propose a truly optimal formula between the two. We give explicit error bounds for both formulas. Numerical comparisons show that the first formula gives a better error bound than the standard formula, and the second formula gives a far better error bound than both the standard and first formulas.

Graph dynamical systems (GDS) model dynamic processes on a (static) graph. Stochastic GDS has been used for network-based epidemics models such as the contact process and the reversible contact process. In this paper, we consider stochastic GDS that are also continuous-time Markov processes (CTMP), whose transition rates are linear functions of some dynamics parameters $\theta$ of interest (i.e., healing, exogeneous, and endogeneous infection rates). Our goal is to estimate $\theta$ from a single, finite-time, continuously observed trajectory of the CTMP. Parameter estimation of CTMP is challenging when the state space is large; for GDS, the number of Markov states are \emph{exponential} in the number of nodes of the graph. We showed that holding classes (i.e., Markov states with the same holding time distribution) give efficient partitions of the state space of GDS. We derived an upperbound on the number of holding classes for the contact process, which is polynomial in the number of nodes. We utilized holding classes to solve a smaller system of linear equations to find $\theta$. Experimental results show that finding reasonable results can be achieved even for short trajectories, particularly for the contact process. In fact, trajectory length does not significantly affect estimation error.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司