A search in Scopus within "Article title, Abstract, Keywords" unveils 2,444 documents focused on the biomechanics of Abdominal Aortic Aneurysm (AAA), mostly on AAA wall stress. Only 24 documents investigated AAA kinematics, an important topic that could potentially offer insights into the biomechanics of AAA. In this paper, we present an image-based approach for patient-specific, in vivo, and non-invasive AAA kinematic analysis using patient's time-resolved 3D computed tomography angiography (4D CTA) images. Our approach relies on regularized deformable image registration for estimating wall displacement, estimation of the local wall strain as the ratio of its normal displacement to its local radius of curvature, and local surface fitting with non-deterministic outlier detection for estimating the wall radius of curvature. We verified our approach against synthetic ground truth image data created by warping a 3D CTA image of AAA using a realistic displacement field obtained from a finite element biomechanical model. We applied our approach to assess AAA wall displacements and strains in ten patients. Our kinematic analysis results indicated that the 99th percentile of circumferential wall strain, among all patients, ranged from 3.16% to 7.31%, with an average of 5.36% and a standard deviation of 1.28%.
Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach. Find open-source code at //github.com/cosynus-lix/STAR.
We present SMPLOlympics, a collection of physically simulated environments that allow humanoids to compete in a variety of Olympic sports. Sports simulation offers a rich and standardized testing ground for evaluating and improving the capabilities of learning algorithms due to the diversity and physically demanding nature of athletic activities. As humans have been competing in these sports for many years, there is also a plethora of existing knowledge on the preferred strategy to achieve better performance. To leverage these existing human demonstrations from videos and motion capture, we design our humanoid to be compatible with the widely-used SMPL and SMPL-X human models from the vision and graphics community. We provide a suite of individual sports environments, including golf, javelin throw, high jump, long jump, and hurdling, as well as competitive sports, including both 1v1 and 2v2 games such as table tennis, tennis, fencing, boxing, soccer, and basketball. Our analysis shows that combining strong motion priors with simple rewards can result in human-like behavior in various sports. By providing a unified sports benchmark and baseline implementation of state and reward designs, we hope that SMPLOlympics can help the control and animation communities achieve human-like and performant behaviors.
Recent work has introduced the "Quantum-Computation Classical-Communication" (QCCC) (Chung et. al.) setting for cryptography. There has been some evidence that One Way Puzzles (OWPuzz) are the natural central cryptographic primitive for this setting (Khurana and Tomer). For a primitive to be considered central it should have several characteristics. It should be well behaved (which for this paper we will think of as having amplification, combiners, and universal constructions); it should be implied by a wide variety of other primitives; and it should be equivalent to some class of useful primitives. We present combiners, correctness and security amplification, and a universal construction for OWPuzz. Our proof of security amplification uses a new and cleaner version construction of EFI from OWPuzz (in comparison to the result of Khurana and Tomer) that generalizes to weak OWPuzz and is the most technically involved section of the paper. It was previously known that OWPuzz are implied by other primitives of interest including commitments, symmetric key encryption, one way state generators (OWSG), and therefore pseudorandom states (PRS). However we are able to rule out OWPuzz's equivalence to many of these primitives by showing a black box separation between general OWPuzz and a restricted class of OWPuzz (those with efficient verification, which we call EV-OWPuzz). We then show that EV-OWPuzz are also implied by most of these primitives, which separates them from OWPuzz as well. This separation also separates extending PRS from highly compressing PRS answering an open question of Ananth et. al.
Statistical modelling in the presence of data organized in groups is a crucial task in Bayesian statistics. The present paper conceives a mixture model based on a novel family of Bayesian priors designed for multilevel data and obtained by normalizing a finite point process. In particular, the work extends the popular Mixture of Finite Mixture model to the hierarchical framework to capture heterogeneity within and between groups. A full distribution theory for this new family and the induced clustering is developed, including the marginal, posterior, and predictive distributions. Efficient marginal and conditional Gibbs samplers are designed to provide posterior inference. The proposed mixture model overcomes the Hierarchical Dirichlet Process, the utmost tool for handling multilevel data, in terms of analytical feasibility, clustering discovery, and computational time. The motivating application comes from the analysis of shot put data, which contains performance measurements of athletes across different seasons. In this setting, the proposed model is exploited to induce clustering of the observations across seasons and athletes. By linking clusters across seasons, similarities and differences in athletes' performances are identified.
This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
This paper offers a comprehensive review of the research on Natural Language Generation (NLG) over the past two decades, especially in relation to data-to-text generation and text-to-text generation deep learning methods, as well as new applications of NLG technology. This survey aims to (a) give the latest synthesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the field; (b) detail meticulously and comprehensively various NLG tasks and datasets, and draw attention to the challenges in NLG evaluation, focusing on different evaluation methods and their relationships; (c) highlight some future emphasis and relatively recent research issues that arise due to the increasing synergy between NLG and other artificial intelligence areas, such as computer vision, text and computational creativity.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.