亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic summarization of legal texts is an important and still a challenging task since legal documents are often long and complicated with unusual structures and styles. Recent advances of deep models trained end-to-end with differentiable losses can well-summarize natural text, yet when applied to legal domain, they show limited results. In this paper, we propose to use reinforcement learning to train current deep summarization models to improve their performance on the legal domain. To this end, we adopt proximal policy optimization methods and introduce novel reward functions that encourage the generation of candidate summaries satisfying both lexical and semantic criteria. We apply our method to training different summarization backbones and observe a consistent and significant performance gain across 3 public legal datasets.

相關內容

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

We study constrained reinforcement learning (CRL) from a novel perspective by setting constraints directly on state density functions, rather than the value functions considered by previous works. State density has a clear physical and mathematical interpretation, and is able to express a wide variety of constraints such as resource limits and safety requirements. Density constraints can also avoid the time-consuming process of designing and tuning cost functions required by value function-based constraints to encode system specifications. We leverage the duality between density functions and Q functions to develop an effective algorithm to solve the density constrained RL problem optimally and the constrains are guaranteed to be satisfied. We prove that the proposed algorithm converges to a near-optimal solution with a bounded error even when the policy update is imperfect. We use a set of comprehensive experiments to demonstrate the advantages of our approach over state-of-the-art CRL methods, with a wide range of density constrained tasks as well as standard CRL benchmarks such as Safety-Gym.

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.

Training machine learning models in a meaningful order, from the easy samples to the hard ones, using curriculum learning can provide performance improvements over the standard training approach based on random data shuffling, without any additional computational costs. Curriculum learning strategies have been successfully employed in all areas of machine learning, in a wide range of tasks. However, the necessity of finding a way to rank the samples from easy to hard, as well as the right pacing function for introducing more difficult data can limit the usage of the curriculum approaches. In this survey, we show how these limits have been tackled in the literature, and we present different curriculum learning instantiations for various tasks in machine learning. We construct a multi-perspective taxonomy of curriculum learning approaches by hand, considering various classification criteria. We further build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm, linking the discovered clusters with our taxonomy. At the end, we provide some interesting directions for future work.

Recently, many unsupervised deep learning methods have been proposed to learn clustering with unlabelled data. By introducing data augmentation, most of the latest methods look into deep clustering from the perspective that the original image and its tansformation should share similar semantic clustering assignment. However, the representation features before softmax activation function could be quite different even the assignment probability is very similar since softmax is only sensitive to the maximum value. This may result in high intra-class diversities in the representation feature space, which will lead to unstable local optimal and thus harm the clustering performance. By investigating the internal relationship between mutual information and contrastive learning, we summarized a general framework that can turn any maximizing mutual information into minimizing contrastive loss. We apply it to both the semantic clustering assignment and representation feature and propose a novel method named Deep Robust Clustering by Contrastive Learning (DRC). Different to existing methods, DRC aims to increase inter-class diver-sities and decrease intra-class diversities simultaneously and achieve more robust clustering results. Extensive experiments on six widely-adopted deep clustering benchmarks demonstrate the superiority of DRC in both stability and accuracy. e.g., attaining 71.6% mean accuracy on CIFAR-10, which is 7.1% higher than state-of-the-art results.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Solving complex, temporally-extended tasks is a long-standing problem in reinforcement learning (RL). We hypothesize that one critical element of solving such problems is the notion of compositionality. With the ability to learn concepts and sub-skills that can be composed to solve longer tasks, i.e. hierarchical RL, we can acquire temporally-extended behaviors. However, acquiring effective yet general abstractions for hierarchical RL is remarkably challenging. In this paper, we propose to use language as the abstraction, as it provides unique compositional structure, enabling fast learning and combinatorial generalization, while retaining tremendous flexibility, making it suitable for a variety of problems. Our approach learns an instruction-following low-level policy and a high-level policy that can reuse abstractions across tasks, in essence, permitting agents to reason using structured language. To study compositional task learning, we introduce an open-source object interaction environment built using the MuJoCo physics engine and the CLEVR engine. We find that, using our approach, agents can learn to solve to diverse, temporally-extended tasks such as object sorting and multi-object rearrangement, including from raw pixel observations. Our analysis find that the compositional nature of language is critical for learning diverse sub-skills and systematically generalizing to new sub-skills in comparison to non-compositional abstractions that use the same supervision.

Despite deep reinforcement learning has recently achieved great successes, however in multiagent environments, a number of challenges still remain. Multiagent reinforcement learning (MARL) is commonly considered to suffer from the problem of non-stationary environments and exponentially increasing policy space. It would be even more challenging to learn effective policies in circumstances where the rewards are sparse and delayed over long trajectories. In this paper, we study Hierarchical Deep Multiagent Reinforcement Learning (hierarchical deep MARL) in cooperative multiagent problems with sparse and delayed rewards, where efficient multiagent learning methods are desperately needed. We decompose the original MARL problem into hierarchies and investigate how effective policies can be learned hierarchically in synchronous/asynchronous hierarchical MARL frameworks. Several hierarchical deep MARL architectures, i.e., Ind-hDQN, hCom and hQmix, are introduced for different learning paradigms. Moreover, to alleviate the issues of sparse experiences in high-level learning and non-stationarity in multiagent settings, we propose a new experience replay mechanism, named as Augmented Concurrent Experience Replay (ACER). We empirically demonstrate the effects and efficiency of our approaches in several classic Multiagent Trash Collection tasks, as well as in an extremely challenging team sports game, i.e., Fever Basketball Defense.

Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.

Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.

北京阿比特科技有限公司