亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any $n \times n$ matrix pencil $(A,B)$. The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel, and Dumitriu [Technical Report 2010]. We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni, and Srivastava [Foundations of Computational Mathematics 2022]. In particular, we show that perturbing and scaling $(A,B)$ regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of $(A,B)$ in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible $S,T$ and diagonal $D$ such that $||A - SDT^{-1}||_2 \leq \varepsilon$ and $||B - ST^{-1}||_2 \leq \varepsilon$ in at most $O \left(\log^2 \left( \frac{n}{\varepsilon} \right) T_{\text{MM}}(n) \right)$ operations, where $T_{\text{MM}}(n)$ is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact arithmetic matrix pencil diagonalization.

相關內容

In this paper we consider the filtering problem associated to partially observed McKean-Vlasov stochastic differential equations (SDEs). The model consists of data that are observed at regular and discrete times and the objective is to compute the conditional expectation of (functionals) of the solutions of the SDE at the current time. This problem, even the ordinary SDE case is challenging and requires numerical approximations. Based upon the ideas in [3, 12] we develop a new particle filter (PF) and multilevel particle filter (MLPF) to approximate the afore-mentioned expectations. We prove under assumptions that, for $\epsilon>0$, to obtain a mean square error of $\mathcal{O}(\epsilon^2)$ the PF has a cost per-observation time of $\mathcal{O}(\epsilon^{-5})$ and the MLPF costs $\mathcal{O}(\epsilon^{-4})$ (best case) or $\mathcal{O}(\epsilon^{-4}\log(\epsilon)^2)$ (worst case). Our theoretical results are supported by numerical experiments.

Qini curves have emerged as an attractive and popular approach for evaluating the benefit of data-driven targeting rules for treatment allocation. We propose a generalization of the Qini curve to multiple costly treatment arms, that quantifies the value of optimally selecting among both units and treatment arms at different budget levels. We develop an efficient algorithm for computing these curves and propose bootstrap-based confidence intervals that are exact in large samples for any point on the curve. These confidence intervals can be used to conduct hypothesis tests comparing the value of treatment targeting using an optimal combination of arms with using just a subset of arms, or with a non-targeting assignment rule ignoring covariates, at different budget levels. We demonstrate the statistical performance in a simulation experiment and an application to treatment targeting for election turnout.

We present a sample- and time-efficient differentially private algorithm for ordinary least squares, with error that depends linearly on the dimension and is independent of the condition number of $X^\top X$, where $X$ is the design matrix. All prior private algorithms for this task require either $d^{3/2}$ examples, error growing polynomially with the condition number, or exponential time. Our near-optimal accuracy guarantee holds for any dataset with bounded statistical leverage and bounded residuals. Technically, we build on the approach of Brown et al. (2023) for private mean estimation, adding scaled noise to a carefully designed stable nonprivate estimator of the empirical regression vector.

We propose and analyze several inexact regularized Newton-type methods for finding a global saddle point of \emph{convex-concave} unconstrained min-max optimization problems. Compared to first-order methods, our understanding of second-order methods for min-max optimization is relatively limited, as obtaining global rates of convergence with second-order information is much more involved. In this paper, we examine how second-order information can be used to speed up extra-gradient methods, even under inexactness. Specifically, we show that the proposed methods generate iterates that remain within a bounded set and that the averaged iterates converge to an $\epsilon$-saddle point within $O(\epsilon^{-2/3})$ iterations in terms of a restricted gap function. This matched the theoretically established lower bound in this context. We also provide a simple routine for solving the subproblem at each iteration, requiring a single Schur decomposition and $O(\log\log(1/\epsilon))$ calls to a linear system solver in a quasi-upper-triangular system. Thus, our method improves the existing line-search-based second-order min-max optimization methods by shaving off an $O(\log\log(1/\epsilon))$ factor in the required number of Schur decompositions. Finally, we present numerical experiments on synthetic and real data that demonstrate the efficiency of the proposed methods.

We give a non-adaptive algorithm that makes $2^{\tilde{O}(\sqrt{k\log(1/\varepsilon_2 - \varepsilon_1)})}$ queries to a Boolean function $f:\{\pm 1\}^n \rightarrow \{\pm 1\}$ and distinguishes between $f$ being $\varepsilon_1$-close to some $k$-junta versus $\varepsilon_2$-far from every $k$-junta. At the heart of our algorithm is a local mean estimation procedure for Boolean functions that may be of independent interest. We complement our upper bound with a matching lower bound, improving a recent lower bound obtained by Chen et al. We thus obtain the first tight bounds for a natural property of Boolean functions in the tolerant testing model.

We present an $O(1)$-round fully-scalable deterministic massively parallel algorithm for computing the min-plus matrix multiplication of unit-Monge matrices. We use this to derive a $O(\log n)$-round fully-scalable massively parallel algorithm for solving the exact longest increasing subsequence (LIS) problem. For a fully-scalable MPC regime, this result substantially improves the previously known algorithm of $O(\log^4 n)$-round complexity, and matches the best algorithm for computing the $(1+\epsilon)$-approximation of LIS.

We introduce the natural notion of a matching frame in a $2$-dimensional string. A matching frame in a $2$-dimensional $n\times m$ string $M$, is a rectangle such that the strings written on the horizontal sides of the rectangle are identical, and so are the strings written on the vertical sides of the rectangle. Formally, a matching frame in $M$ is a tuple $(u,d,\ell,r)$ such that $M[u][\ell ..r] = M[d][\ell ..r]$ and $M[u..d][\ell] = M[u..d][r]$. In this paper, we present an algorithm for finding the maximum perimeter matching frame in a matrix $M$ in $\tilde{O}(n^{2.5})$ time (assuming $n \ge m)$. Additionally, for every constant $\epsilon> 0$ we present a near-linear $(1-\epsilon)$-approximation algorithm for the maximum perimeter of a matching frame. In the development of the aforementioned algorithms, we introduce inventive technical elements and uncover distinctive structural properties that we believe will captivate the curiosity of the community.

We propose a theoretical framework to compute, rapidly and accurately, the signal-to-noise ratio at the output of spatial-division multiplexing (SDM) linear MIMO equalizers with arbitrary numbers of spatial modes and filter taps and demonstrate three orders of magnitude of speed-up compared to Monte Carlo simulations.

In the classical prophet inequality settings, a gambler is given a sequence of $n$ random variables $X_1, \dots, X_n$, taken from known distributions, observes their values in this (potentially adversarial) order, and select one of them, immediately after it is being observed, so that its value is as high as possible. The classical \emph{prophet inequality} shows a strategy that guarantees a value at least half of that an omniscience prophet that picks the maximum, and this ratio is optimal. Here, we generalize the prophet inequality, allowing the gambler some additional information about the future that is otherwise privy only to the prophet. Specifically, at any point in the process, the gambler is allowed to query an oracle $\mathcal{O}$. The oracle responds with a single bit answer: YES if the current realization is greater than the remaining realizations, and NO otherwise. We show that the oracle model with $m$ oracle calls is equivalent to the \textsc{Top-$1$-of-$(m+1)$} model when the objective is maximizing the probability of selecting the maximum. This equivalence fails to hold when the objective is maximizing the competitive ratio, but we still show that any algorithm for the oracle model implies an equivalent competitive ratio for the \textsc{Top-$1$-of-$(m+1)$} model. We resolve the oracle model for any $m$, giving tight lower and upper bound on the best possible competitive ratio compared to an almighty adversary. As a consequence, we provide new results as well as improvements on known results for the \textsc{Top-$1$-of-$m$} model.

Given an increasing sequence of integers $x_1,\ldots,x_n$ from a universe $\{0,\ldots,u-1\}$, the monotone minimal perfect hash function (MMPHF) for this sequence is a data structure that answers the following rank queries: $rank(x) = i$ if $x = x_i$, for $i\in \{1,\ldots,n\}$, and $rank(x)$ is arbitrary otherwise. Assadi, Farach-Colton, and Kuszmaul recently presented at SODA'23 a proof of the lower bound $\Omega(n \min\{\log\log\log u, \log n\})$ for the bits of space required by MMPHF, provided $u \ge n 2^{2^{\sqrt{\log\log n}}}$, which is tight since there is a data structure for MMPHF that attains this space bound (and answers the queries in $O(\log u)$ time). In this paper, we close the remaining gap by proving that, for $u \ge (1+\epsilon)n$, where $\epsilon > 0$ is any constant, the tight lower bound is $\Omega(n \min\{\log\log\log \frac{u}{n}, \log n\})$, which is also attainable; we observe that, for all reasonable cases when $n < u < (1+\epsilon)n$, known facts imply tight bounds, which virtually settles the problem. Along the way we substantially simplify the proof of Assadi et al. replacing a part of their heavy combinatorial machinery by trivial observations. However, an important part of the proof still remains complicated. This part of our paper repeats arguments of Assadi et al. and is not novel. Nevertheless, we include it, for completeness, offering a somewhat different perspective on these arguments.

北京阿比特科技有限公司