We propose a principled way to define Gaussian process priors on various sets of unweighted graphs: directed or undirected, with or without loops. We endow each of these sets with a geometric structure, inducing the notions of closeness and symmetries, by turning them into a vertex set of an appropriate metagraph. Building on this, we describe the class of priors that respect this structure and are analogous to the Euclidean isotropic processes, like squared exponential or Mat\'ern. We propose an efficient computational technique for the ostensibly intractable problem of evaluating these priors' kernels, making such Gaussian processes usable within the usual toolboxes and downstream applications. We go further to consider sets of equivalence classes of unweighted graphs and define the appropriate versions of priors thereon. We prove a hardness result, showing that in this case, exact kernel computation cannot be performed efficiently. However, we propose a simple Monte Carlo approximation for handling moderately sized cases. Inspired by applications in chemistry, we illustrate the proposed techniques on a real molecular property prediction task in the small data regime.
Recent progress in information retrieval finds that embedding query and document representation into multi-vector yields a robust bi-encoder retriever on out-of-distribution datasets. In this paper, we explore whether late interaction, the simplest form of multi-vector, is also helpful to neural rerankers that only use the [CLS] vector to compute the similarity score. Although intuitively, the attention mechanism of rerankers at the previous layers already gathers the token-level information, we find adding late interaction still brings an extra 5% improvement in average on out-of-distribution datasets, with little increase in latency and no degradation in in-domain effectiveness. Through extensive experiments and analysis, we show that the finding is consistent across different model sizes and first-stage retrievers of diverse natures and that the improvement is more prominent on longer queries.
The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem is formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly-used $\ell_1$-norm penalty is less appropriate in this setting, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to most existing first-order methods for this problem, we base our method on the second-order proximal Newton approach to obtain an efficient solver for large-scale networks. This approach is considered the most efficient for the related graphical LASSO problem and allows for several algorithmic features we exploit, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of \emph{both} computational complexity and graph learning accuracy compared to existing methods.
Massive samples of event sequences data occur in various domains, including e-commerce, healthcare, and finance. There are two main challenges regarding inference of such data: computational and methodological. The amount of available data and the length of event sequences per client are typically large, thus it requires long-term modelling. Moreover, this data is often sparse and non-uniform, making classic approaches for time series processing inapplicable. Existing solutions include recurrent and transformer architectures in such cases. To allow continuous time, the authors introduce specific parametric intensity functions defined at each moment on top of existing models. Due to the parametric nature, these intensities represent only a limited class of event sequences. We propose the COTIC method based on a continuous convolution neural network suitable for non-uniform occurrence of events in time. In COTIC, dilations and multi-layer architecture efficiently handle dependencies between events. Furthermore, the model provides general intensity dynamics in continuous time - including self-excitement encountered in practice. The COTIC model outperforms existing approaches on majority of the considered datasets, producing embeddings for an event sequence that can be used to solve downstream tasks - e.g. predicting next event type and return time. The code of the proposed method can be found in the GitHub repository (//github.com/VladislavZh/COTIC).
Gaussian processes (GPs) are an attractive class of machine learning models because of their simplicity and flexibility as building blocks of more complex Bayesian models. Meanwhile, graph neural networks (GNNs) emerged recently as a promising class of models for graph-structured data in semi-supervised learning and beyond. Their competitive performance is often attributed to a proper capturing of the graph inductive bias. In this work, we introduce this inductive bias into GPs to improve their predictive performance for graph-structured data. We show that a prominent example of GNNs, the graph convolutional network, is equivalent to some GP when its layers are infinitely wide; and we analyze the kernel universality and the limiting behavior in depth. We further present a programmable procedure to compose covariance kernels inspired by this equivalence and derive example kernels corresponding to several interesting members of the GNN family. We also propose a computationally efficient approximation of the covariance matrix for scalable posterior inference with large-scale data. We demonstrate that these graph-based kernels lead to competitive classification and regression performance, as well as advantages in computation time, compared with the respective GNNs.
Inductive programming frequently relies on some form of search in order to identify candidate solutions. However, the size of the search space limits the use of inductive programming to the production of relatively small programs. If we could somehow correctly predict the subset of instructions required for a given problem then inductive programming would be more tractable. We will show that this can be achieved in a high percentage of cases. This paper presents a novel model of programming language instruction co-occurrence that was built to support search space partitioning in the Zoea distributed inductive programming system. This consists of a collection of intersecting instruction subsets derived from a large sample of open source code. Using the approach different parts of the search space can be explored in parallel. The number of subsets required does not grow linearly with the quantity of code used to produce them and a manageable number of subsets is sufficient to cover a high percentage of unseen code. This approach also significantly reduces the overall size of the search space - often by many orders of magnitude.
This work introduces a highly-scalable spectral graph densification framework (SGL) for learning resistor networks with linear measurements, such as node voltages and currents. We show that the proposed graph learning approach is equivalent to solving the classical graphical Lasso problems with Laplacian-like precision matrices. We prove that given $O(\log N)$ pairs of voltage and current measurements, it is possible to recover sparse $N$-node resistor networks that can well preserve the effective resistance distances on the original graph. In addition, the learned graphs also preserve the structural (spectral) properties of the original graph, which can potentially be leveraged in many circuit design and optimization tasks. To achieve more scalable performance, we also introduce a solver-free method (SF-SGL) that exploits multilevel spectral approximation of the graphs and allows for a scalable and flexible decomposition of the entire graph spectrum (to be learned) into multiple different eigenvalue clusters (frequency bands). Such a solver-free approach allows us to more efficiently identify the most spectrally-critical edges for reducing various ranges of spectral embedding distortions. Through extensive experiments for a variety of real-world test cases, we show that the proposed approach is highly scalable for learning sparse resistor networks without sacrificing solution quality. We also introduce a data-driven EDA algorithm for vectorless power/thermal integrity verifications to allow estimating worst-case voltage/temperature (gradient) distributions across the entire chip by leveraging a few voltage/temperature measurements.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
Graph neural networks (GNNs) have been a hot spot of recent research and are widely utilized in diverse applications. However, with the use of huger data and deeper models, an urgent demand is unsurprisingly made to accelerate GNNs for more efficient execution. In this paper, we provide a comprehensive survey on acceleration methods for GNNs from an algorithmic perspective. We first present a new taxonomy to classify existing acceleration methods into five categories. Based on the classification, we systematically discuss these methods and highlight their correlations. Next, we provide comparisons from aspects of the efficiency and characteristics of these methods. Finally, we suggest some promising prospects for future research.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.