亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Neural-network models have been employed to predict the instantaneous flow close to the wall in a viscoelastic turbulent channel flow. The numerical simulation data at the wall is utilized to predict the instantaneous velocity fluctuations and polymeric-stress fluctuations at three different wall-normal positions. Apart from predicting the velocity fluctuations well in a hibernating flow, the neural-network models are also shown to predict the polymeric shear stress and the trace of the polymeric stresses at a given wall-normal location with reasonably good accuracy. These non-intrusive sensing models can be integrated in an experimental setting to construct the polymeric-stress field in turbulent flows, which otherwise may not be directly quantifiable in experimental measurements.

相關內容

Ultra-widefield (UWF) fundus images are replacing traditional fundus images in screening, detection, prediction, and treatment of complications related to myopia because their much broader visual range is advantageous for highly myopic eyes. Spherical equivalent (SE) is extensively used as the main myopia outcome measure, and axial length (AL) has drawn increasing interest as an important ocular component for assessing myopia. Cutting-edge studies show that SE and AL are strongly correlated. Using the joint information from SE and AL is potentially better than using either separately. In the deep learning community, though there is research on multiple-response tasks with a 3D image biomarker, dependence among responses is only sporadically taken into consideration. Inspired by the spirit that information extracted from the data by statistical methods can improve the prediction accuracy of deep learning models, we formulate a class of multivariate response regression models with a higher-order tensor biomarker, for the bivariate tasks of regression-classification and regression-regression. Specifically, we propose a copula-enhanced convolutional neural network (CeCNN) framework that incorporates the dependence between responses through a Gaussian copula (with parameters estimated from a warm-up CNN) and uses the induced copula-likelihood loss with the backbone CNNs. We establish the statistical framework and algorithms for the aforementioned two bivariate tasks. We show that the CeCNN has better prediction accuracy after adding the dependency information to the backbone models. The modeling and the proposed CeCNN algorithm are applicable beyond the UWF scenario and can be effective with other backbones beyond ResNet and LeNet.

Recurrent neural networks (RNNs) notoriously struggle to learn long-term memories, primarily due to vanishing and exploding gradients. The recent success of state-space models (SSMs), a subclass of RNNs, to overcome such difficulties challenges our theoretical understanding. In this paper, we delve into the optimization challenges of RNNs and discover that, as the memory of a network increases, changes in its parameters result in increasingly large output variations, making gradient-based learning highly sensitive, even without exploding gradients. Our analysis further reveals the importance of the element-wise recurrence design pattern combined with careful parametrizations in mitigating this effect. This feature is present in SSMs, as well as in other architectures, such as LSTMs. Overall, our insights provide a new explanation for some of the difficulties in gradient-based learning of RNNs and why some architectures perform better than others.

Helmholtz decompositions of the elastic fields open up new avenues for the solution of linear elastic scattering problems via boundary integral equations (BIE) [Dong, Lai, Li, Mathematics of Computation,2021]. The main appeal of this approach is that the ensuing systems of BIE feature only integral operators associated with the Helmholtz equation. However, these BIE involve non standard boundary integral operators that do not result after the application of either the Dirichlet or the Neumann trace to Helmholtz single and double layer potentials. Rather, the Helmholtz decomposition approach leads to BIE formulations of elastic scattering problems with Neumann boundary conditions that involve boundary traces of the Hessians of Helmholtz layer potential. As a consequence, the classical combined field approach applied in the framework of the Helmholtz decompositions leads to BIE formulations which, although robust, are not of the second kind. Following the regularizing methodology introduced in [Boubendir, Dominguez, Levadoux, Turc, SIAM Journal on Applied Mathematics 2015] we design and analyze novel robust Helmholtz decomposition BIE for the solution of elastic scattering that are of the second kind in the case of smooth scatterers in two dimensions. We present a variety of numerical results based on Nystrom discretizations that illustrate the good performance of the second kind regularized formulations in connections to iterative solvers.

Many state-of-the-art models trained on long-range sequences, for example S4, S5 or LRU, are made of sequential blocks combining State-Space Models (SSMs) with neural networks. In this paper we provide a PAC bound that holds for these kind of architectures with stable SSM blocks and does not depend on the length of the input sequence. Imposing stability of the SSM blocks is a standard practice in the literature, and it is known to help performance. Our results provide a theoretical justification for the use of stable SSM blocks as the proposed PAC bound decreases as the degree of stability of the SSM blocks increases.

Robotic exploration has long captivated researchers aiming to map complex environments efficiently. Techniques such as potential fields and frontier exploration have traditionally been employed in this pursuit, primarily focusing on solitary agents. Recent advancements have shifted towards optimizing exploration efficiency through multiagent systems. However, many existing approaches overlook critical real-world factors, such as broadcast range limitations, communication costs, and coverage overlap. This paper addresses these gaps by proposing a distributed maze exploration strategy (CU-LVP) that assumes constrained broadcast ranges and utilizes Voronoi diagrams for better area partitioning. By adapting traditional multiagent methods to distributed environments with limited broadcast ranges, this study evaluates their performance across diverse maze topologies, demonstrating the efficacy and practical applicability of the proposed method. The code and experimental results supporting this study are available in the following repository: //github.com/manouslinard/multiagent-exploration/.

Multi-target linear shrinkage is an extension of the standard single-target linear shrinkage for covariance estimation. We combine several constant matrices - the targets - with the sample covariance matrix. We derive the oracle and a \textit{bona fide} multi-target linear shrinkage estimator with exact and empirical mean. In both settings, we proved its convergence towards the oracle under Kolmogorov asymptotics. Finally, we show empirically that it outperforms other standard estimators in various situations.

Bayesian nonparametric mixture models are common for modeling complex data. While these models are well-suited for density estimation, recent results proved posterior inconsistency of the number of clusters when the true number of components is finite, for the Dirichlet process and Pitman--Yor process mixture models. We extend these results to additional Bayesian nonparametric priors such as Gibbs-type processes and finite-dimensional representations thereof. The latter include the Dirichlet multinomial process, the recently proposed Pitman-Yor, and normalized generalized gamma multinomial processes. We show that mixture models based on these processes are also inconsistent in the number of clusters and discuss possible solutions. Notably, we show that a post-processing algorithm introduced for the Dirichlet process can be extended to more general models and provides a consistent method to estimate the number of components.

This article provides a reduced-order modelling framework for turbulent compressible flows discretized by the use of finite volume approaches. The basic idea behind this work is the construction of a reduced-order model capable of providing closely accurate solutions with respect to the high fidelity flow fields. Full-order solutions are often obtained through the use of segregated solvers (solution variables are solved one after another), employing slightly modified conservation laws so that they can be decoupled and then solved one at a time. Classical reduction architectures, on the contrary, rely on the Galerkin projection of a complete Navier-Stokes system to be projected all at once, causing a mild discrepancy with the high order solutions. This article relies on segregated reduced-order algorithms for the resolution of turbulent and compressible flows in the context of physical and geometrical parameters. At the full-order level turbulence is modeled using an eddy viscosity approach. Since there is a variety of different turbulence models for the approximation of this supplementary viscosity, one of the aims of this work is to provide a reduced-order model which is independent on this selection. This goal is reached by the application of hybrid methods where Navier-Stokes equations are projected in a standard way while the viscosity field is approximated by the use of data-driven interpolation methods or by the evaluation of a properly trained neural network. By exploiting the aforementioned expedients it is possible to predict accurate solutions with respect to the full-order problems characterized by high Reynolds numbers and elevated Mach numbers.

We propose a semiparametric model for dyadic link formations in directed networks. The model contains a set of degree parameters that measure different effects of popularity or outgoingness across nodes, a regression parameter vector that reflects the homophily effect resulting from the nodal attributes or pairwise covariates associated with edges, and a set of latent random noises with unknown distributions. Our interest lies in inferring the unknown degree parameters and homophily parameters. The dimension of the degree parameters increases with the number of nodes. Under the high-dimensional regime, we develop a kernel-based least squares approach to estimate the unknown parameters. The major advantage of our estimator is that it does not encounter the incidental parameter problem for the homophily parameters. We prove consistency of all the resulting estimators of the degree parameters and homophily parameters. We establish high-dimensional central limit theorems for the proposed estimators and provide several applications of our general theory, including testing the existence of degree heterogeneity, testing sparse signals and recovering the support. Simulation studies and a real data application are conducted to illustrate the finite sample performance of the proposed methods.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司