亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we consider the problem of mobile robots that need to manipulate/transport an object via cables or robotic arms. We consider the scenario where the number of manipulating robots is redundant, i.e. a desired object configuration can be obtained by different configurations of the robots. The objective of this work is to show that communication can be used to implement cooperative local feedback controllers in the robots to improve disturbance rejection and reduce structural stress in the object. In particular we consider the realistic scenario where measurements are sampled and transmitted over wireless, and the sampling period is comparable with the system dynamics time constants. We first propose a kinematic model which is consistent with the overall systems dynamics under high-gain control and then we provide sufficient conditions for the exponential stability and monotonic decrease of the configuration error under different norms. Finally, we test the proposed controllers on the full dynamical systems showing the benefit of local communication.

相關內容

Call-by-Push-Value (CBPV) is a programming paradigm subsuming both Call-by-Name (CBN) and Call-by-Value (CBV) semantics. The paradigm was recently modelled by means of the Bang Calculus, a term language connecting CBPV and Linear Logic. This paper presents a revisited version of the Bang Calculus, called $\lambda !$, enjoying some important properties missing in the original system. Indeed, the new calculus integrates commutative conversions to unblock value redexes while being confluent at the same time. A second contribution is related to non-idempotent types. We provide a quantitative type system for our $\lambda !$-calculus, and we show that the length of the (weak) reduction of a typed term to its normal form \emph{plus} the size of this normal form is bounded by the size of its type derivation. We also explore the properties of this type system with respect to CBN/CBV translations. We keep the original CBN translation from $\lambda$-calculus to the Bang Calculus, which preserves normal forms and is sound and complete with respect to the (quantitative) type system for CBN. However, in the case of CBV, we reformulate both the translation and the type system to restore two main properties: preservation of normal forms and completeness. Last but not least, the quantitative system is refined to a \emph{tight} one, which transforms the previous upper bound on the length of reduction to normal form plus its size into two independent \emph{exact} measures for them.

Certain wheeled mobile robots e.g., electric wheelchairs, can operate through indirect joystick controls from users. Correct steering angle becomes essential when the user should determine the vehicle direction and velocity, in particular for differential wheeled vehicles since the vehicle velocity and direction are controlled with only two actuating wheels. This problem gets more challenging when complex curves should be realized by the user. A novel assistive controller with safety constraints is needed to address these problems. Also, the classic control methods mostly require the desired states beforehand which completely contradicts human's spontaneous decisions on the desired location to go. In this work, we develop a novel assistive control strategy based on differential geometry relying on only joystick inputs and vehicle states where the controller does not require any desired states. We begin with explaining the vehicle kinematics and our designed Darboux frame kinematics on a contact point of a virtual wheel and plane. Next, the geometric controller using the Darboux frame kinematics is designed for having smooth trajectories under certain safety constraints. We experiment our approach with different participants and evaluate its performance in various routes.

Serially connected robots are promising candidates for performing tasks in confined spaces such as search-and-rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimensional redundant modules in a way that improves mobility. Here we develop a general framework to control serially connected multi-legged robots. Specifically, we combine two approaches to build a general shape control scheme which can provide baseline patterns of self-deformation ("gaits") for effective locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality reduction and a biological gait classification scheme to generate cyclic patterns of body deformation and foot lifting/lowering, which facilitate generation of arbitrary substrate contact patterns. Second, we use geometric mechanics methods to facilitates identification of optimal phasing of these undulations to maximize speed and/or stability. Our scheme allows the development of effective gaits in multi-legged robots locomoting on flat frictional terrain with diverse number of limbs (4, 6, 16, and even 0 limbs) and body actuation capabilities (including sidewinding gaits on limbless devices). By properly coordinating the body undulation and the leg placement, our framework combines the advantages of both limbless robots (modularity) and legged robots (mobility). We expect that our framework can provide general control schemes for the rapid deployment of general multi-legged robots, paving the ways toward machines that can traverse complex environments under real-life conditions.

In this paper, we provide exponential rates of convergence to the interior Nash equilibrium for continuous-time dual-space game dynamics such as mirror descent (MD) and actor-critic (AC). We perform our analysis in $N$-player continuous concave games that satisfy certain monotonicity assumptions while possibly also admitting potential functions. In the first part of this paper, we provide a novel relative characterization of monotone games and show that MD and its discounted version converge with $\mathcal{O}(e^{-\beta t})$ in relatively strongly and relatively hypo-monotone games, respectively. In the second part of this paper, we specialize our results to games that admit a relatively strongly concave potential and show AC converges with $\mathcal{O}(e^{-\beta t})$. These rates extend their known convergence conditions. Simulations are performed which empirically back up our results.

Contextual bandit algorithms have been recently studied under the federated learning setting to satisfy the demand of keeping data decentralized and pushing the learning of bandit models to the client side. But limited by the required communication efficiency, existing solutions are restricted to linear models to exploit their closed-form solutions for parameter estimation. Such a restricted model choice greatly hampers these algorithms' practical utility. In this paper, we take the first step to addressing this challenge by studying generalized linear bandit models under a federated learning setting. We propose a communication-efficient solution framework that employs online regression for local update and offline regression for global update. We rigorously proved that, though the setting is more general and challenging, our algorithm can attain sub-linear rate in both regret and communication cost, which is also validated by our extensive empirical evaluations.

Policy gradient methods are widely used in reinforcement learning algorithms to search for better policies in the parameterized policy space. They do gradient search in the policy space and are known to converge very slowly. Nesterov developed an accelerated gradient search algorithm for convex optimization problems. This has been recently extended for non-convex and also stochastic optimization. We use Nesterov's acceleration for policy gradient search in the well-known actor-critic algorithm and show the convergence using ODE method. We tested this algorithm on a scheduling problem. Here an incoming job is scheduled into one of the four queues based on the queue lengths. We see from experimental results that algorithm using Nesterov's acceleration has significantly better performance compared to algorithm which do not use acceleration. To the best of our knowledge this is the first time Nesterov's acceleration has been used with actor-critic algorithm.

In order to track all persons in a scene, the tracking-by-detection paradigm has proven to be a very effective approach. Yet, relying solely on a single detector is also a major limitation, as useful image information might be ignored. Consequently, this work demonstrates how to fuse two detectors into a tracking system. To obtain the trajectories, we propose to formulate tracking as a weighted graph labeling problem, resulting in a binary quadratic program. As such problems are NP-hard, the solution can only be approximated. Based on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle such difficult problems. Evaluation on pedestrian tracking is provided for multiple scenarios, showing superior results over single detector tracking and standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on the new MOT17 benchmark, outperforming over 90 trackers.

This paper introduces a novel neural network-based reinforcement learning approach for robot gaze control. Our approach enables a robot to learn and to adapt its gaze control strategy for human-robot interaction neither with the use of external sensors nor with human supervision. The robot learns to focus its attention onto groups of people from its own audio-visual experiences, independently of the number of people, of their positions and of their physical appearances. In particular, we use a recurrent neural network architecture in combination with Q-learning to find an optimal action-selection policy; we pre-train the network using a simulated environment that mimics realistic scenarios that involve speaking/silent participants, thus avoiding the need of tedious sessions of a robot interacting with people. Our experimental evaluation suggests that the proposed method is robust against parameter estimation, i.e. the parameter values yielded by the method do not have a decisive impact on the performance. The best results are obtained when both audio and visual information is jointly used. Experiments with the Nao robot indicate that our framework is a step forward towards the autonomous learning of socially acceptable gaze behavior.

This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.

We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Incorporating the IRL engine into the nonlinear latent structure renders existing deep GP inference approaches intractable. To tackle this, we develop a non-standard variational approximation framework which extends previous inference schemes. This allows for approximate Bayesian treatment of the feature space and guards against overfitting. Carrying out representation and inverse reinforcement learning simultaneously within our model outperforms state-of-the-art approaches, as we demonstrate with experiments on standard benchmarks ("object world","highway driving") and a new benchmark ("binary world").

北京阿比特科技有限公司