亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-talker overlapped speech recognition remains a significant challenge, requiring not only speech recognition but also speaker diarization tasks to be addressed. In this paper, to better address these tasks, we first introduce speaker labels into an autoregressive transformer-based speech recognition model to support multi-speaker overlapped speech recognition. Then, to improve speaker diarization, we propose a novel speaker mask branch to detection the speech segments of individual speakers. With the proposed model, we can perform both speech recognition and speaker diarization tasks simultaneously using a single model. Experimental results on the LibriSpeech-based overlapped dataset demonstrate the effectiveness of the proposed method in both speech recognition and speaker diarization tasks, particularly enhancing the accuracy of speaker diarization in relatively complex multi-talker scenarios.

相關內容

語音識別是計算機科學和計算語言學的一個跨學科子領域,它發展了一些方法和技術,使計算機可以將口語識別和翻譯成文本。 它也被稱為自動語音識別(ASR),計算機語音識別或語音轉文本(STT)。它整合了計算機科學,語言學和計算機工程領域的知識和研究。

Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.

Chinese grammatical error correction (CGEC) faces serious overcorrection challenges when employing autoregressive generative models such as sequence-to-sequence (Seq2Seq) models and decoder-only large language models (LLMs). While previous methods aim to address overcorrection in Seq2Seq models, they are difficult to adapt to decoder-only LLMs. In this paper, we propose an alignment-enhanced corrector for the overcorrection problem that applies to both Seq2Seq models and decoder-only LLMs. Our method first trains a correction model to generate an initial correction of the source sentence. Then, we combine the source sentence with the initial correction and feed it through an alignment model for another round of correction, aiming to enforce the alignment model to focus on potential overcorrection. Moreover, to enhance the model's ability to identify nuances, we further explore the reverse alignment of the source sentence and the initial correction. Finally, we transfer the alignment knowledge from two alignment models to the correction model, instructing it on how to avoid overcorrection. Experimental results on three CGEC datasets demonstrate the effectiveness of our approach in alleviating overcorrection and improving overall performance.

The performance of clients in Federated Learning (FL) can vary due to various reasons. Assessing the contributions of each client is crucial for client selection and compensation. It is challenging because clients often have non-independent and identically distributed (non-iid) data, leading to potentially noisy or divergent updates. The risk of malicious clients amplifies the challenge especially when there's no access to clients' local data or a benchmark root dataset. In this paper, we introduce a novel method called Fair, Robust, and Efficient Client Assessment (FRECA) for quantifying client contributions in FL. FRECA employs a framework called FedTruth to estimate the global model's ground truth update, balancing contributions from all clients while filtering out impacts from malicious ones. This approach is robust against Byzantine attacks and incorporates a Byzantine-resilient aggregation algorithm. FRECA is also efficient, as it operates solely on local model updates and requires no validation operations or datasets. Our experimental results show that FRECA can accurately and efficiently quantify client contributions in a robust manner.

Our paper discovers a new trade-off of using regression adjustments (RAs) in causal inference under covariate-adaptive randomizations (CARs). On one hand, RAs can improve the efficiency of causal estimators by incorporating information from covariates that are not used in the randomization. On the other hand, RAs can degrade estimation efficiency due to their estimation errors, which are not asymptotically negligible when the number of regressors is of the same order as the sample size. Ignoring the estimation errors of RAs may result in serious over-rejection of causal inference under the null hypothesis. To address the issue, we construct a new ATE estimator by optimally linearly combining the adjusted and unadjusted estimators. We then develop a unified inference theory for this estimator under CARs. It has two features: (1) the Wald test based on it achieves the exact asymptotic size under the null hypothesis, regardless of whether the number of covariates is fixed or diverges no faster than the sample size; and (2) it guarantees weak efficiency improvement over both the adjusted and unadjusted estimators.

Wordle, a word guessing game rose to global popularity in the January of 2022. The goal of the game is to guess a five-letter English word within six tries. Each try provides the player with hints by means of colour changing tiles which inform whether or not a given character is part of the solution as well as, in cases where it is part of the solution, whether or not it is in the correct placement. Numerous attempts have been made to find the best starting word and best strategy to solve the daily wordle. This study uses character statistics of five-letter words to determine the best three starting words.

Text-to-3D generation has shown rapid progress in recent days with the advent of score distillation, a methodology of using pretrained text-to-2D diffusion models to optimize neural radiance field (NeRF) in the zero-shot setting. However, the lack of 3D awareness in the 2D diffusion models destabilizes score distillation-based methods from reconstructing a plausible 3D scene. To address this issue, we propose 3DFuse, a novel framework that incorporates 3D awareness into pretrained 2D diffusion models, enhancing the robustness and 3D consistency of score distillation-based methods. We realize this by first constructing a coarse 3D structure of a given text prompt and then utilizing projected, view-specific depth map as a condition for the diffusion model. Additionally, we introduce a training strategy that enables the 2D diffusion model learns to handle the errors and sparsity within the coarse 3D structure for robust generation, as well as a method for ensuring semantic consistency throughout all viewpoints of the scene. Our framework surpasses the limitations of prior arts, and has significant implications for 3D consistent generation of 2D diffusion models.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司