Mutual information is a widely-used information theoretic measure to quantify the amount of association between variables. It is used extensively in many applications such as image registration, diagnosis of failures in electrical machines, pattern recognition, data mining and tests of independence. The main goal of this paper is to provide an efficient estimator of the mutual information based on the approach of Al Labadi et. al. (2021). The estimator is explored through various examples and is compared to its frequentist counterpart due to Berrett et al. (2019). The results show the good performance of the procedure by having a smaller mean squared error.
Statistical divergences (SDs), which quantify the dissimilarity between probability distributions, are a basic constituent of statistical inference and machine learning. A modern method for estimating those divergences relies on parametrizing an empirical variational form by a neural network (NN) and optimizing over parameter space. Such neural estimators are abundantly used in practice, but corresponding performance guarantees are partial and call for further exploration. In particular, there is a fundamental tradeoff between the two sources of error involved: approximation and empirical estimation. While the former needs the NN class to be rich and expressive, the latter relies on controlling complexity. We explore this tradeoff for an estimator based on a shallow NN by means of non-asymptotic error bounds, focusing on four popular $\mathsf{f}$-divergences -- Kullback-Leibler, chi-squared, squared Hellinger, and total variation. Our analysis relies on non-asymptotic function approximation theorems and tools from empirical process theory. The bounds reveal the tension between the NN size and the number of samples, and enable to characterize scaling rates thereof that ensure consistency. For compactly supported distributions, we further show that neural estimators with a slightly different NN growth-rate are near minimax rate-optimal, achieving the parametric convergence rate up to logarithmic factors.
This paper studies the non-asymptotic merits of the double $\ell_1$-regularized for heterogeneous overdispersed count data via negative binomial regressions. Under the restricted eigenvalue conditions, we prove the oracle inequalities for Lasso estimators of two partial regression coefficients for the first time, using concentration inequalities of empirical processes. Furthermore, derived from the oracle inequalities, the consistency and convergence rate for the estimators are the theoretical guarantees for further statistical inference. Finally, both simulations and a real data analysis demonstrate that the new methods are effective.
Fiducial inference, as generalized by Hannig et al. (2016), is applied to nonparametric g-modeling (Efron, 2016) in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution, and use the generated samples to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach yields good statistical performance in terms of the mean squared error of point estimators and the coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients (Efron, 2016).
Fan et al. [$\mathit{Annals}$ $\mathit{of}$ $\mathit{Statistics}$ $\textbf{47}$(6) (2019) 3009-3031] constructed a distributed principal component analysis (PCA) algorithm to reduce the communication cost between multiple servers significantly. However, their algorithm's guarantee is only for sub-Gaussian data. Spurred by this deficiency, this paper enhances the effectiveness of their distributed PCA algorithm by utilizing robust covariance matrix estimators of Minsker [$\mathit{Annals}$ $\mathit{of}$ $\mathit{Statistics}$ $\textbf{46}$(6A) (2018) 2871-2903] and Ke et al. [$\mathit{Statistical}$ $\mathit{Science}$ $\textbf{34}$(3) (2019) 454-471] to tame heavy-tailed data. The theoretical results demonstrate that when the sampling distribution is symmetric innovation with the bounded fourth moment or asymmetric with the finite $6$-th moment, the statistical error rate of the final estimator produced by the robust algorithm is similar to that of sub-Gaussian tails. Extensive numerical trials support the theoretical analysis and indicate that our algorithm is robust to heavy-tailed data and outliers.
Given functional data from a survival process with time-dependent covariates, we derive a smooth convex representation for its nonparametric log-likelihood functional and obtain its functional gradient. From this, we devise a generic gradient boosting procedure for estimating the hazard function nonparametrically. An illustrative implementation of the procedure using regression trees is described to show how to recover the unknown hazard. The generic estimator is consistent if the model is correctly specified; alternatively, an oracle inequality can be demonstrated for tree-based models. To avoid overfitting, boosting employs several regularization devices. One of them is step-size restriction, but the rationale for this is somewhat mysterious from the viewpoint of consistency. Our work brings some clarity to this issue by revealing that step-size restriction is a mechanism for preventing the curvature of the risk from derailing convergence.
In the study of causal inference, statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability when developing a desirable estimator for treatment effects. To make efforts to address the issue, we propose a non-parametric framework for estimating the Conditional Average Treatment Effect (CATE) function in this paper. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation, (ii) utilize non-parametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state of the art methods. We also evaluate empirical performance in real-life settings, using two observational social studies in the United States, and interpret policy implications following the numerical results.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.
Large margin nearest neighbor (LMNN) is a metric learner which optimizes the performance of the popular $k$NN classifier. However, its resulting metric relies on pre-selected target neighbors. In this paper, we address the feasibility of LMNN's optimization constraints regarding these target points, and introduce a mathematical measure to evaluate the size of the feasible region of the optimization problem. We enhance the optimization framework of LMNN by a weighting scheme which prefers data triplets which yield a larger feasible region. This increases the chances to obtain a good metric as the solution of LMNN's problem. We evaluate the performance of the resulting feasibility-based LMNN algorithm using synthetic and real datasets. The empirical results show an improved accuracy for different types of datasets in comparison to regular LMNN.
Many problems on signal processing reduce to nonparametric function estimation. We propose a new methodology, piecewise convex fitting (PCF), and give a two-stage adaptive estimate. In the first stage, the number and location of the change points is estimated using strong smoothing. In the second stage, a constrained smoothing spline fit is performed with the smoothing level chosen to minimize the MSE. The imposed constraint is that a single change point occurs in a region about each empirical change point of the first-stage estimate. This constraint is equivalent to requiring that the third derivative of the second-stage estimate has a single sign in a small neighborhood about each first-stage change point. We sketch how PCF may be applied to signal recovery, instantaneous frequency estimation, surface reconstruction, image segmentation, spectral estimation and multivariate adaptive regression.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.