亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{//github.com/chequanghuy/TwinLiteNet}.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 傳感器 · 優化器 · 機器人 · 均方誤差 ·
2023 年 9 月 19 日

The number and arrangement of sensors on an autonomous mobile robot dramatically influence its perception capabilities. Ensuring that sensors are mounted in a manner that enables accurate detection, localization, and mapping is essential for the success of downstream control tasks. However, when designing a new robotic platform, researchers and practitioners alike usually mimic standard configurations or maximize simple heuristics like field-of-view (FOV) coverage to decide where to place exteroceptive sensors. In this work, we conduct an information-theoretic investigation of this overlooked element of mobile robotic perception in the context of simultaneous localization and mapping (SLAM). We show how to formalize the sensor arrangement problem as a form of subset selection under the E-optimality performance criterion. While this formulation is NP-hard in general, we further show that a combination of greedy sensor selection and fast convex relaxation-based post-hoc verification enables the efficient recovery of certifiably optimal sensor designs in practice. Results from synthetic experiments reveal that sensors placed with OASIS outperform benchmarks in terms of mean squared error of visual SLAM estimates.

Natural Language Explanations (NLE) aim at supplementing the prediction of a model with human-friendly natural text. Existing NLE approaches involve training separate models for each downstream task. In this work, we propose Uni-NLX, a unified framework that consolidates all NLE tasks into a single and compact multi-task model using a unified training objective of text generation. Additionally, we introduce two new NLE datasets: 1) ImageNetX, a dataset of 144K samples for explaining ImageNet categories, and 2) VQA-ParaX, a dataset of 123K samples for explaining the task of Visual Question Answering (VQA). Both datasets are derived leveraging large language models (LLMs). By training on the 1M combined NLE samples, our single unified framework is capable of simultaneously performing seven NLE tasks including VQA, visual recognition and visual reasoning tasks with 7X fewer parameters, demonstrating comparable performance to the independent task-specific models in previous approaches, and in certain tasks even outperforming them. Code is at //github.com/fawazsammani/uni-nlx

Reinforcement Learning (RL) has the potential to surpass human performance in driving without needing any expert supervision. Despite its promise, the state-of-the-art in sensorimotor self-driving is dominated by imitation learning methods due to the inherent shortcomings of RL algorithms. Nonetheless, RL agents are able to discover highly successful policies when provided with privileged ground truth representations of the environment. In this work, we investigate what separates privileged RL agents from sensorimotor agents for urban driving in order to bridge the gap between the two. We propose vision-based deep learning models to approximate the privileged representations from sensor data. In particular, we identify aspects of state representation that are crucial for the success of the RL agent such as desired route generation and stop zone prediction, and propose solutions to gradually develop less privileged RL agents. We also observe that bird's-eye-view models trained on offline datasets do not generalize to online RL training due to distribution mismatch. Through rigorous evaluation on the CARLA simulation environment, we shed light on the significance of the state representations in RL for autonomous driving and point to unresolved challenges for future research.

Large Language Models (LLMs) have revolutionized programming and software engineering. AI programming assistants such as GitHub Copilot X enable conversational programming, narrowing the gap between human intent and code generation. However, prior literature has identified a key challenge--there is a gap between user's mental model of the system's understanding after a sequence of natural language utterances, and the AI system's actual understanding. To address this, we introduce Programming with Representations (PwR), an approach that uses representations to convey the system's understanding back to the user in natural language. We conducted an in-lab task-centered study with 14 users of varying programming proficiency and found that representations significantly improve understandability, and instilled a sense of agency among our participants. Expert programmers use them for verification, while intermediate programmers benefit from confirmation. Natural language-based development with LLMs, coupled with representations, promises to transform software development, making it more accessible and efficient.

Large Language Models (LLMs) have emerged as powerful tools capable of accomplishing a broad spectrum of tasks. Their abilities span numerous areas, and one area where they have made a significant impact is in the domain of code generation. In this context, we view LLMs as mutation and crossover tools. Meanwhile, Quality-Diversity (QD) algorithms are known to discover diverse and robust solutions. By merging the code-generating abilities of LLMs with the diversity and robustness of QD solutions, we introduce LLMatic, a Neural Architecture Search (NAS) algorithm. While LLMs struggle to conduct NAS directly through prompts, LLMatic uses a procedural approach, leveraging QD for prompts and network architecture to create diverse and highly performant networks. We test LLMatic on the CIFAR-10 image classification benchmark, demonstrating that it can produce competitive networks with just $2,000$ searches, even without prior knowledge of the benchmark domain or exposure to any previous top-performing models for the benchmark.

The transformation to Industry 4.0 changes the way embedded software systems are developed. Digital twins have the potential for cost-effective software development and maintenance strategies. With reduced costs and faster development cycles, small and medium-sized enterprises (SME) have the chance to grow with new smart products. We interviewed SMEs about their current development processes. In this paper, we present the first results of these interviews. First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach, due to a lack of proper tooling. Security/safety concerns, and the accessibility of hardware are the main impediments. Only temporary access to the hardware leads to Software-in-the-Loop development approaches based on simulations/emulators. Yet, this is not in all use cases possible. All interviewees see the potential of Software-in-the-Loop approaches and digital twins with regard to quality and customization. One reason it will take some effort to convince engineers, is the conservative nature of the embedded community, particularly in SMEs.

Deep Neural Networks (DNNs) have drawn attention because of their outstanding performance on various tasks. However, deploying full-fledged DNNs in resource-constrained devices (edge, mobile, IoT) is difficult due to their large size. To overcome the issue, various approaches are considered, like offloading part of the computation to the cloud for final inference (split computing) or performing the inference at an intermediary layer without passing through all layers (early exits). In this work, we propose combining both approaches by using early exits in split computing. In our approach, we decide up to what depth of DNNs computation to perform on the device (splitting layer) and whether a sample can exit from this layer or need to be offloaded. The decisions are based on a weighted combination of accuracy, computational, and communication costs. We develop an algorithm named SplitEE to learn an optimal policy. Since pre-trained DNNs are often deployed in new domains where the ground truths may be unavailable and samples arrive in a streaming fashion, SplitEE works in an online and unsupervised setup. We extensively perform experiments on five different datasets. SplitEE achieves a significant cost reduction ($>50\%$) with a slight drop in accuracy ($<2\%$) as compared to the case when all samples are inferred at the final layer. The anonymized source code is available at \url{//anonymous.4open.science/r/SplitEE_M-B989/README.md}.

Gaussian processes (GPs) have emerged as a prominent technique for machine learning and signal processing. A key component in GP modeling is the choice of kernel, and linear multiple kernels (LMKs) have become an attractive kernel class due to their powerful modeling capacity and interpretability. This paper focuses on the grid spectral mixture (GSM) kernel, an LMK that can approximate arbitrary stationary kernels. Specifically, we propose a novel GSM kernel formulation for multi-dimensional data that reduces the number of hyper-parameters compared to existing formulations, while also retaining a favorable optimization structure and approximation capability. In addition, to make the large-scale hyper-parameter optimization in the GSM kernel tractable, we first introduce the distributed SCA (DSCA) algorithm. Building on this, we propose the doubly distributed SCA (D$^2$SCA) algorithm based on the alternating direction method of multipliers (ADMM) framework, which allows us to cooperatively learn the GSM kernel in the context of big data while maintaining data privacy. Furthermore, we tackle the inherent communication bandwidth restriction in distributed frameworks, by quantizing the hyper-parameters in D$^2$SCA, resulting in the quantized doubly distributed SCA (QD$^2$SCA) algorithm. Theoretical analysis establishes convergence guarantees for the proposed algorithms, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our methods.

Scene Graph Generation is a critical enabler of environmental comprehension for autonomous robotic systems. Most of existing methods, however, are often thwarted by the intricate dynamics of background complexity, which limits their ability to fully decode the inherent topological information of the environment. Additionally, the wealth of contextual information encapsulated within depth cues is often left untapped, rendering existing approaches less effective. To address these shortcomings, we present STDG, an avant-garde Depth-Guided One-Stage Scene Graph Generation methodology. The innovative architecture of STDG is a triad of custom-built modules: The Depth Guided HHA Representation Generation Module, the Depth Guided Semi-Teaching Network Learning Module, and the Depth Guided Scene Graph Generation Module. This trifecta of modules synergistically harnesses depth information, covering all aspects from depth signal generation and depth feature utilization, to the final scene graph prediction. Importantly, this is achieved without imposing additional computational burden during the inference phase. Experimental results confirm that our method significantly enhances the performance of one-stage scene graph generation baselines.

The application of Physics-Informed Neural Networks (PINNs) is investigated for the first time in solving the one-dimensional Countercurrent spontaneous imbibition (COUCSI) problem at both early and late time (i.e., before and after the imbibition front meets the no-flow boundary). We introduce utilization of Change-of-Variables as a technique for improving performance of PINNs. We formulated the COUCSI problem in three equivalent forms by changing the independent variables. The first describes saturation as function of normalized position X and time T; the second as function of X and Y=T^0.5; and the third as a sole function of Z=X/T^0.5 (valid only at early time). The PINN model was generated using a feed-forward neural network and trained based on minimizing a weighted loss function, including the physics-informed loss term and terms corresponding to the initial and boundary conditions. All three formulations could closely approximate the correct solutions, with water saturation mean absolute errors around 0.019 and 0.009 for XT and XY formulations and 0.012 for the Z formulation at early time. The Z formulation perfectly captured the self-similarity of the system at early time. This was less captured by XT and XY formulations. The total variation of saturation was preserved in the Z formulation, and it was better preserved with XY- than XT formulation. Redefining the problem based on the physics-inspired variables reduced the non-linearity of the problem and allowed higher solution accuracies, a higher degree of loss-landscape convexity, a lower number of required collocation points, smaller network sizes, and more computationally efficient solutions.

北京阿比特科技有限公司