Image-text retrieval is a widely studied topic in the field of computer vision due to the exponential growth of multimedia data, whose core concept is to measure the similarity between images and text. However, most existing retrieval methods heavily rely on cross-attention mechanisms for cross-modal fine-grained alignment, which takes into account excessive irrelevant regions and treats prominent and non-significant words equally, thereby limiting retrieval accuracy. This paper aims to investigate an alignment approach that reduces the involvement of non-significant fragments in images and text while enhancing the alignment of prominent segments. For this purpose, we introduce the Cross-Modal Prominent Fragments Enhancement Aligning Network(CPFEAN), which achieves improved retrieval accuracy by diminishing the participation of irrelevant regions during alignment and relatively increasing the alignment similarity of prominent words. Additionally, we incorporate prior textual information into image regions to reduce misalignment occurrences. In practice, we first design a novel intra-modal fragments relationship reasoning method, and subsequently employ our proposed alignment mechanism to compute the similarity between images and text. Extensive quantitative comparative experiments on MS-COCO and Flickr30K datasets demonstrate that our approach outperforms state-of-the-art methods by about 5% to 10% in the rSum metric.
Text-based person search aims to simultaneously localize and identify the target person based on query text from uncropped scene images, which can be regarded as the unified task of person detection and text-based person retrieval task. In this work, we propose a large-scale benchmark dataset named PRW-TPS-CN based on the widely used person search dataset PRW. Our dataset contains 47,102 sentences, which means there is quite more information than existing dataset. These texts precisely describe the person images from top to bottom, which in line with the natural description order. We also provide both Chinese and English descriptions in our dataset for more comprehensive evaluation. These characteristics make our dataset more applicable. To alleviate the inconsistency between person detection and text-based person retrieval, we take advantage of the rich texts in PRW-TPS-CN dataset. We propose to aggregate multiple texts as text prototypes to maintain the prominent text features of a person, which can better reflect the whole character of a person. The overall prototypes lead to generating the image attention map to eliminate the detection misalignment causing the decrease of text-based person retrieval. Thus, the inconsistency between person detection and text-based person retrieval is largely alleviated. We conduct extensive experiments on the PRW-TPS-CN dataset. The experimental results show the PRW-TPS-CN dataset's effectiveness and the state-of-the-art performance of our approach.
This research explores a novel approach in the realm of learning-based image registration, addressing the limitations inherent in weakly-supervised and unsupervised methods. Weakly-supervised techniques depend heavily on scarce labeled data, while unsupervised strategies rely on indirect measures of accuracy through image similarity. Notably, traditional supervised learning is not utilized due to the lack of precise deformation ground-truth in medical imaging. Our study introduces a unique training framework with On-the-Fly Guidance (OFG) to enhance existing models. This framework, during training, generates pseudo-ground truth a few steps ahead by refining the current deformation prediction with our custom optimizer. This pseudo-ground truth then serves to directly supervise the model in a supervised learning context. The process involves optimizing the predicted deformation with a limited number of steps, ensuring training efficiency and setting achievable goals for each training phase. OFG notably boosts the precision of existing image registration techniques while maintaining the speed of learning-based methods. We assessed our approach using various pseudo-ground truth generation strategies, including predictions and optimized outputs from established registration models. Our experiments spanned three benchmark datasets and three cutting-edge models, with OFG demonstrating significant and consistent enhancements, surpassing previous state-of-the-arts in the field. OFG offers an easily integrable plug-and-play solution to enhance the training effectiveness of learning-based image registration models. Code at //github.com/miraclefactory/on-the-fly-guidance.
Cross-modal object tracking is an important research topic in the field of information fusion, and it aims to address imaging limitations in challenging scenarios by integrating switchable visible and near-infrared modalities. However, existing tracking methods face some difficulties in adapting to significant target appearance variations in the presence of modality switch. For instance, model update based tracking methods struggle to maintain stable tracking results during modality switching, leading to error accumulation and model drift. Template based tracking methods solely rely on the template information from first frame and/or last frame, which lacks sufficient representation ability and poses challenges in handling significant target appearance changes. To address this problem, we propose a prototype-based cross-modal object tracker called ProtoTrack, which introduces a novel prototype learning scheme to adapt to significant target appearance variations, for cross-modal object tracking. In particular, we design a multi-modal prototype to represent target information by multi-kind samples, including a fixed sample from the first frame and two representative samples from different modalities. Moreover, we develop a prototype generation algorithm based on two new modules to ensure the prototype representative in different challenges......
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing. However, fully extracting the target mask with limited user inputs remains challenging. We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs. Regarding the last segmentation result as the initial mask, an iterative refinement process is commonly employed to continually enhance the initial mask. Nevertheless, conventional techniques suffer from sensitivity to the variance in the initial mask. To circumvent this problem, our proposed method incorporates a mask matching algorithm for ensuring consistent inferences from different types of initial masks. We also introduce a target-aware zooming algorithm to preserve object information during downsampling, balancing efficiency and accuracy. Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.
Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.
We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $\sim$ 12% under supervised settings and 7% $\sim$ 13% under semi-supervised settings.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.
Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs