亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Magnetic Resonance Imaging can produce detailed images of the anatomy and physiology of the human body that can assist doctors in diagnosing and treating pathologies such as tumours. However, MRI suffers from very long acquisition times that make it susceptible to patient motion artifacts and limit its potential to deliver dynamic treatments. Conventional approaches such as Parallel Imaging and Compressed Sensing allow for an increase in MRI acquisition speed by reconstructing MR images by acquiring less MRI data using multiple receiver coils. Recent advancements in Deep Learning combined with Parallel Imaging and Compressed Sensing techniques have the potential to produce high-fidelity reconstructions from highly accelerated MRI data. In this work we present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction, called Recurrent Variational Network (RecurrentVarNet) by exploiting the properties of Convolution Recurrent Networks and unrolled algorithms for solving Inverse Problems. The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent optimization algorithm for solving inverse problems. Contrary to traditional approaches, the optimization steps are performed in the observation domain ($k$-space) instead of the image domain. Each recurrent block of RecurrentVarNet refines the observed $k$-space and is comprised of a data consistency term and a recurrent unit which takes as input a learned hidden state and the prediction of the previous block. Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset, outperforming previous conventional and deep learning-based approaches. We will release all models code and baselines on our public repository.

相關內容

壓縮感知是近年來極為熱門的(de)研究(jiu)前(qian)沿,在(zai)若干應(ying)用(yong)領域(yu)中(zhong)都引起矚目。 compressive sensing(CS) 又稱(cheng) compressived sensing ,compressived sample,大意是在(zai)采(cai)集信(xin)號(hao)(hao)的(de)時候(模擬到數字(zi)),同(tong)時完成對(dui)信(xin)號(hao)(hao)壓縮之意。 與稀疏表示不同(tong),壓縮感知關注的(de)是如何利用(yong)信(xin)號(hao)(hao)本(ben)身所具有的(de)稀疏性,從部分觀測樣本(ben)中(zhong)恢復原(yuan)信(xin)號(hao)(hao)。

This paper proposes a new two-step procedure for sparse-view tomographic image reconstruction. It is called RISING, since it combines an early-stopped Rapid Iterative Solver with a subsequent Iteration Network-based Gaining step. So far, regularized iterative methods have widely been used for X-ray computed tomography image reconstruction from low-sampled data, since they converge to a sparse solution in a suitable domain, as upheld by the Compressed Sensing theory. Unfortunately, their use is practically limited by their high computational cost which imposes to perform only a few iterations in the available time for clinical exams. Data-driven methods, using neural networks to post-process a coarse and noisy image obtained from geometrical algorithms, have been recently studied and appreciated for both their computational speed and accurate reconstructions. However, there is no evidence, neither theoretically nor numerically, that neural networks based algorithms solve the mathematical inverse problem modeling the tomographic reconstruction process. In our two-step approach, the first phase executes very few iterations of a regularized model-based algorithm whereas the second step completes the missing iterations by means of a neural network. The resulting hybrid deep-variational framework preserves the convergence properties of the iterative method and, at the same time, it exploits the computational speed and flexibility of a data-driven approach. Experiments performed on a simulated and a real data set confirm the numerical and visual accuracy of the reconstructed RISING images in short computational times.

We study the shape reconstruction of an inclusion from the {faraway} measurement of the associated electric field. This is an inverse problem of practical importance in biomedical imaging and is known to be notoriously ill-posed. By incorporating Drude's model of the permittivity parameter, we propose a novel reconstruction scheme by using the plasmon resonance with a significantly enhanced resonant field. We conduct a delicate sensitivity analysis to establish a sharp relationship between the sensitivity of the reconstruction and the plasmon resonance. It is shown that when plasmon resonance occurs, the sensitivity functional blows up and hence ensures a more robust and effective construction. Then we combine the Tikhonov regularization with the Laplace approximation to solve the inverse problem, which is an organic hybridization of the deterministic and stochastic methods and can quickly calculate the minimizer while capture the uncertainty of the solution. We conduct extensive numerical experiments to illustrate the promising features of the proposed reconstruction scheme.

Accelerating magnetic resonance image (MRI) reconstruction process is a challenging ill-posed inverse problem due to the excessive under-sampling operation in k-space. In this paper, we propose a recurrent transformer model, namely \textbf{ReconFormer}, for MRI reconstruction which can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data. In particular, the proposed architecture is built upon Recurrent Pyramid Transformer Layers (RPTL), which jointly exploits intrinsic multi-scale information at every architecture unit as well as the dependencies of the deep feature correlation through recurrent states. Moreover, the proposed ReconFormer is lightweight since it employs the recurrent structure for its parameter efficiency. We validate the effectiveness of ReconFormer on multiple datasets with different magnetic resonance sequences and show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency. Implementation code will be available in //github.com/guopengf/ReconFormer.

X-ray computed tomographic infrastructures are medical imaging modalities that rely on the acquisition of rays crossing examined objects while measuring their intensity decrease. Physical measurements are post-processed by mathematical reconstruction algorithms that may offer weaker or top-notch consistency guarantees on the computed volumetric field. Superior results are provided on the account of an abundance of low-noise measurements being supplied. Nonetheless, such a scanning process would expose the examined body to an undesirably large-intensity and long-lasting ionising radiation, imposing severe health risks. One main objective of the ongoing research is the reduction of the number of projections while keeping the quality performance stable. Due to the under-sampling, the noise occurring inherently because of photon-electron interactions is now supplemented by reconstruction artifacts. Recently, deep learning methods, especially fully convolutional networks have been extensively investigated and proven to be efficient in filtering such deviations. In this report algorithms are presented that take as input a slice of a low-quality reconstruction of the volume in question and aim to map it to the reconstruction that is considered ideal, the ground truth. Above that, the first system comprises two additional elements: firstly, it ensures the consistency with the measured sinogram, secondly it adheres to constraints proposed in classical compressive sampling theory. The second one, inspired by classical ways of solving the inverse problem of reconstruction, takes an iterative approach to regularise the hypothesis in the direction of the correct result.

In real world settings, numerous constraints are present which are hard to specify mathematically. However, for the real world deployment of reinforcement learning (RL), it is critical that RL agents are aware of these constraints, so that they can act safely. In this work, we consider the problem of learning constraints from demonstrations of a constraint-abiding agent's behavior. We experimentally validate our approach and show that our framework can successfully learn the most likely constraints that the agent respects. We further show that these learned constraints are \textit{transferable} to new agents that may have different morphologies and/or reward functions. Previous works in this regard have either mainly been restricted to tabular (discrete) settings, specific types of constraints or assume the environment's transition dynamics. In contrast, our framework is able to learn arbitrary \textit{Markovian} constraints in high-dimensions in a completely model-free setting. The code can be found it: \url{//github.com/shehryar-malik/icrl}.

We present Neural A*, a novel data-driven search method for path planning problems. Despite the recent increasing attention to data-driven path planning, a machine learning approach to search-based planning is still challenging due to the discrete nature of search algorithms. In this work, we reformulate a canonical A* search algorithm to be differentiable and couple it with a convolutional encoder to form an end-to-end trainable neural network planner. Neural A* solves a path planning problem by encoding a problem instance to a guidance map and then performing the differentiable A* search with the guidance map. By learning to match the search results with ground-truth paths provided by experts, Neural A* can produce a path consistent with the ground truth accurately and efficiently. Our extensive experiments confirmed that Neural A* outperformed state-of-the-art data-driven planners in terms of the search optimality and efficiency trade-off, and furthermore, successfully predicted realistic human trajectories by directly performing search-based planning on natural image inputs.

Deep reinforcement learning (RL) has achieved many recent successes, yet experiment turn-around time remains a key bottleneck in research and in practice. We investigate how to optimize existing deep RL algorithms for modern computers, specifically for a combination of CPUs and GPUs. We confirm that both policy gradient and Q-value learning algorithms can be adapted to learn using many parallel simulator instances. We further find it possible to train using batch sizes considerably larger than are standard, without negatively affecting sample complexity or final performance. We leverage these facts to build a unified framework for parallelization that dramatically hastens experiments in both classes of algorithm. All neural network computations use GPUs, accelerating both data collection and training. Our results include using an entire DGX-1 to learn successful strategies in Atari games in mere minutes, using both synchronous and asynchronous algorithms.

Active learning from demonstration allows a robot to query a human for specific types of input to achieve efficient learning. Existing work has explored a variety of active query strategies; however, to our knowledge, none of these strategies directly minimize the performance risk of the policy the robot is learning. Utilizing recent advances in performance bounds for inverse reinforcement learning, we propose a risk-aware active inverse reinforcement learning algorithm that focuses active queries on areas of the state space with the potential for large generalization error. We show that risk-aware active learning outperforms standard active IRL approaches on gridworld, simulated driving, and table setting tasks, while also providing a performance-based stopping criterion that allows a robot to know when it has received enough demonstrations to safely perform a task.

We show how to train a fully convolutional neural network to perform inverse rendering from a single, uncontrolled image. The network takes an RGB image as input, regresses albedo and normal maps from which we compute lighting coefficients. Our network is trained using large uncontrolled image collections without ground truth. By incorporating a differentiable renderer, our network can learn from self-supervision. Since the problem is ill-posed we introduce additional supervision: 1. We learn a statistical natural illumination prior, 2. Our key insight is to perform offline multiview stereo (MVS) on images containing rich illumination variation. From the MVS pose and depth maps, we can cross project between overlapping views such that Siamese training can be used to ensure consistent estimation of photometric invariants. MVS depth also provides direct coarse supervision for normal map estimation. We believe this is the first attempt to use MVS supervision for learning inverse rendering.

Policy gradient methods are widely used in reinforcement learning algorithms to search for better policies in the parameterized policy space. They do gradient search in the policy space and are known to converge very slowly. Nesterov developed an accelerated gradient search algorithm for convex optimization problems. This has been recently extended for non-convex and also stochastic optimization. We use Nesterov's acceleration for policy gradient search in the well-known actor-critic algorithm and show the convergence using ODE method. We tested this algorithm on a scheduling problem. Here an incoming job is scheduled into one of the four queues based on the queue lengths. We see from experimental results that algorithm using Nesterov's acceleration has significantly better performance compared to algorithm which do not use acceleration. To the best of our knowledge this is the first time Nesterov's acceleration has been used with actor-critic algorithm.

北京阿比特科技有限公司