We propose a new method for explanations in Artificial Intelligence (AI) and a tool to test its expressive power within a user interface. In order to bridge the gap between philosophy and human-computer interfaces, we show a new approach for the generation of interactive explanations based on a sophisticated pipeline of AI algorithms for structuring natural language documents into knowledge graphs, answering questions effectively and satisfactorily. Among the mainstream philosophical theories of explanation we identified one that in our view is more easily applicable as a practical model for user-centric tools: Achinstein's Theory of Explanation. With this work we aim to prove that the theory proposed by Achinstein can be actually adapted for being implemented into a concrete software application, as an interactive process answering questions. To this end we found a way to handle the generic (archetypal) questions that implicitly characterise an explanatory processes as preliminary overviews rather than as answers to explicit questions, as commonly understood. To show the expressive power of this approach we designed and implemented a pipeline of AI algorithms for the generation of interactive explanations under the form of overviews, focusing on this aspect of explanations rather than on existing interfaces and presentation logic layers for question answering. We tested our hypothesis on a well-known XAI-powered credit approval system by IBM, comparing CEM, a static explanatory tool for post-hoc explanations, with an extension we developed adding interactive explanations based on our model. The results of the user study, involving more than 100 participants, showed that our proposed solution produced a statistically relevant improvement on effectiveness (U=931.0, p=0.036) over the baseline, thus giving evidence in favour of our theory.
Distinguishing between cause and effect using time series observational data is a major challenge in many scientific fields. A new perspective has been provided based on the principle of Independence of Causal Mechanisms (ICM), leading to the Spectral Independence Criterion (SIC), postulating that the power spectral density (PSD) of the cause time series is uncorrelated with the squared modulus of the frequency response of the filter generating the effect. Since SIC rests on methods and assumptions in stark contrast with most causal discovery methods for time series, it raises questions regarding what theoretical grounds justify its use. In this paper, we provide answers covering several key aspects. After providing an information theoretic interpretation of SIC, we present an identifiability result that sheds light on the context for which this approach is expected to perform well. We further demonstrate the robustness of SIC to downsampling - an obstacle that can spoil Granger-based inference. Finally, an invariance perspective allows to explore the limitations of the spectral independence assumption and how to generalize it. Overall, these results support the postulate of Spectral Independence is a well grounded leading principle for causal inference based on empirical time series.
Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig-zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig-zag modules and the combinatorial entrance path category on stratified $\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig-zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.
Population adjustment methods such as matching-adjusted indirect comparison (MAIC) are increasingly used to compare marginal treatment effects when there are cross-trial differences in effect modifiers and limited patient-level data. MAIC is sensitive to poor covariate overlap and cannot extrapolate beyond the observed covariate space. Current outcome regression-based alternatives can extrapolate but target a conditional treatment effect that is incompatible in the indirect comparison. When adjusting for covariates, one must integrate or average the conditional estimate over the population of interest to recover a compatible marginal treatment effect. We propose a marginalization method based on parametric G-computation that can be easily applied where the outcome regression is a generalized linear model or a Cox model. In addition, we introduce a novel general-purpose method based on multiple imputation, which we term multiple imputation marginalization (MIM) and is applicable to a wide range of models. Both methods can accommodate a Bayesian statistical framework, which naturally integrates the analysis into a probabilistic framework. A simulation study provides proof-of-principle for the methods and benchmarks their performance against MAIC and the conventional outcome regression. The marginalized outcome regression approaches achieve more precise and more accurate estimates than MAIC, particularly when covariate overlap is poor, and yield unbiased marginal treatment effect estimates under no failures of assumptions. Furthermore, the marginalized covariate-adjusted estimates provide greater precision and accuracy than the conditional estimates produced by the conventional outcome regression, which are systematically biased because the measure of effect is non-collapsible.
This paper studies useful sharing, which is a sophisticated optimization for lambda-calculi, in the context of call-by-need evaluation in presence of open terms. Useful sharing turns out to be harder in call-by-need than in call-by-name or call-by-value, because call-by-need evaluates inside environments, making it harder to specify when a substitution step is useful. We isolate the key involved concepts and prove the correctness and the completeness of useful sharing in this setting.
Graph processing has become an important part of various areas of computing, including machine learning, medical applications, social network analysis, computational sciences, and others. A growing amount of the associated graph processing workloads are dynamic, with millions of edges added or removed per second. Graph streaming frameworks are specifically crafted to enable the processing of such highly dynamic workloads. Recent years have seen the development of many such frameworks. However, they differ in their general architectures (with key details such as the support for the concurrent execution of graph updates and queries, or the incorporated graph data organization), the types of updates and workloads allowed, and many others. To facilitate the understanding of this growing field, we provide the first analysis and taxonomy of dynamic and streaming graph processing. We focus on identifying the fundamental system designs and on understanding their support for concurrency, and for different graph updates as well as analytics workloads. We also crystallize the meaning of different concepts associated with streaming graph processing, such as dynamic, temporal, online, and time-evolving graphs, edge-centric processing, models for the maintenance of updates, and graph databases. Moreover, we provide a bridge with the very rich landscape of graph streaming theory by giving a broad overview of recent theoretical related advances, and by discussing which graph streaming models and settings could be helpful in developing more powerful streaming frameworks and designs. We also outline graph streaming workloads and research challenges.
Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Most existing work on automated fact checking is concerned with predicting the veracity of claims based on metadata, social network spread, language used in claims, and, more recently, evidence supporting or denying claims. A crucial piece of the puzzle that is still missing is to understand how to automate the most elaborate part of the process -- generating justifications for verdicts on claims. This paper provides the first study of how these explanations can be generated automatically based on available claim context, and how this task can be modelled jointly with veracity prediction. Our results indicate that optimising both objectives at the same time, rather than training them separately, improves the performance of a fact checking system. The results of a manual evaluation further suggest that the informativeness, coverage and overall quality of the generated explanations are also improved in the multi-task model.
Topic models are among the most widely used methods in natural language processing, allowing researchers to estimate the underlying themes in a collection of documents. Most topic models use unsupervised methods and hence require the additional step of attaching meaningful labels to estimated topics. This process of manual labeling is not scalable and often problematic because it depends on the domain expertise of the researcher and may be affected by cardinality in human decision making. As a consequence, insights drawn from a topic model are difficult to replicate. We present a semi-automatic transfer topic labeling method that seeks to remedy some of these problems. We take advantage of the fact that domain-specific codebooks exist in many areas of research that can be exploited for automated topic labeling. We demonstrate our approach with a dynamic topic model analysis of the complete corpus of UK House of Commons speeches from 1935 to 2014, using the coding instructions of the Comparative Agendas Project to label topics. We show that our method works well for a majority of the topics we estimate, but we also find institution-specific topics, in particular on subnational governance, that require manual input. The method proposed in the paper can be easily extended to other areas with existing domain-specific knowledge bases, such as party manifestos, open-ended survey questions, social media data, and legal documents, in ways that can add knowledge to research programs.