亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

MR-guided microwave ablation (MWA) has proven effective in treating hepatocellular carcinoma (HCC) with small-sized tumors, but the state-of-the-art technique suffers from sub-optimal workflow due to speed and accuracy of needle placement. This paper presents a compact body-mounted MR-conditional robot that can operate in closed-bore MR scanners for accurate needle guidance. The robotic platform consists of two stacked Cartesian XY stages, each with two degrees of freedom, that facilitate needle guidance. The robot is actuated using 3D-printed pneumatic turbines with MR-conditional bevel gear transmission systems. Pneumatic valves and control mechatronics are located inside the MRI control room and are connected to the robot with pneumatic transmission lines and optical fibers. Free space experiments indicated robot-assisted needle insertion error of 2.6$\pm$1.3 mm at an insertion depth of 80 mm. The MR-guided phantom studies were conducted to verify the MR-conditionality and targeting performance of the robot. Future work will focus on the system optimization and validations in animal trials.

相關內容

機(ji)(ji)器(qi)人(ren)(ren)(英語:Robot)包括(kuo)一(yi)切模擬(ni)人(ren)(ren)類(lei)行(xing)為或思想與模擬(ni)其他生物的機(ji)(ji)械(如機(ji)(ji)器(qi)狗,機(ji)(ji)器(qi)貓等)。狹(xia)義上(shang)對機(ji)(ji)器(qi)人(ren)(ren)的定義還有很多分類(lei)法及爭議,有些電(dian)腦(nao)程序甚至也被稱為機(ji)(ji)器(qi)人(ren)(ren)。在當代(dai)(dai)工業中,機(ji)(ji)器(qi)人(ren)(ren)指能(neng)自動運行(xing)任務的人(ren)(ren)造機(ji)(ji)器(qi)設(she)備,用以取代(dai)(dai)或協助(zhu)人(ren)(ren)類(lei)工作,一(yi)般會是機(ji)(ji)電(dian)設(she)備,由計算機(ji)(ji)程序或是電(dian)子電(dian)路控(kong)制。

知識薈萃

精品入門和(he)(he)進階教(jiao)程(cheng)、論文和(he)(he)代(dai)碼(ma)整理等

更多

查看相關VIP內容、論(lun)文、資訊等

Knowledge distillation(KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of what and from where to distill knowledge from the teacher to the student. This oversight may lead to issues like the accumulation of training bias within shallower student layers, potentially compromising the effectiveness of KD. To address these challenges, we propose Hierarchical Layer-selective Feedback Distillation (HLFD). HLFD strategically distills knowledge from a combination of middle layers to earlier layers and transfers final layer knowledge to intermediate layers at both the feature and pixel levels. This design allows the model to learn higher-quality representations from earlier layers, resulting in a robust and compact student model. Extensive quantitative evaluations reveal that HLFD outperforms existing methods by a significant margin. For example, in the kidney segmentation task, HLFD surpasses the student model (without KD) by over 10pp, significantly improving its focus on tumor-specific features. From a qualitative standpoint, the student model trained using HLFD excels at suppressing irrelevant information and can focus sharply on tumor-specific details, which opens a new pathway for more efficient and accurate diagnostic tools.

Recent advancements in Artificial Intelligence (AI) have profoundly influenced medical fields, by providing tools to reduce clinical workloads. However, most AI models are constrained to execute uni-modal tasks, in stark contrast to the comprehensive approaches utilized by medical professionals. To address this, here we present RO-LLaMA, a versatile generalist large language model (LLM) tailored for the field of radiation oncology. This model seamlessly covers a wide range of the workflow of radiation oncologists, adept at various tasks such as clinical report summarization, radiation therapy plan suggestion, and plan-guided therapy target volume segmentation. In particular, to maximize the end-to-end performance, we further present a novel Consistency Embedding Fine-Tuning (CEFTune) technique, which boosts LLM's robustness to additional errors at the intermediates while preserving the capability of handling clean inputs, and creatively transform this concept into LLM-driven segmentation framework as Consistency Embedding Segmentation (CESEG). Experimental results on multi-centre cohort sets demonstrate our proposed RO-LLaMA's promising performance for diverse tasks with generalization capabilities.

Magnetic Resonance Imaging represents an important diagnostic modality; however, its inherently slow acquisition process poses challenges in obtaining fully sampled k-space data under motion in clinical scenarios such as abdominal, cardiac, and prostate imaging. In the absence of fully sampled acquisitions, which can serve as ground truth data, training deep learning algorithms in a supervised manner to predict the underlying ground truth image becomes an impossible task. To address this limitation, self-supervised methods have emerged as a viable alternative, leveraging available subsampled k-space data to train deep learning networks for MRI reconstruction. Nevertheless, these self-supervised approaches often fall short when compared to supervised methodologies. In this paper, we introduce JSSL (Joint Supervised and Self-supervised Learning), a novel training approach for deep learning-based MRI reconstruction algorithms aimed at enhancing reconstruction quality in scenarios where target dataset(s) containing fully sampled k-space measurements are unavailable. Our proposed method operates by simultaneously training a model in a self-supervised learning setting, using subsampled data from the target dataset(s), and in a supervised learning manner, utilizing data from other datasets, referred to as proxy datasets, where fully sampled k-space data is accessible. To demonstrate the efficacy of JSSL, we utilized subsampled prostate parallel MRI measurements as the target dataset, while employing fully sampled brain and knee k-space acquisitions as proxy datasets. Our results showcase a substantial improvement over conventional self-supervised training methods, thereby underscoring the effectiveness of our joint approach. We provide a theoretical motivation for JSSL and establish a practical "rule-of-thumb" for selecting the most appropriate training approach for deep MRI reconstruction.

In biomedical studies, it is often desirable to characterize the interactive mode of multiple disease outcomes beyond their marginal risk. Ising model is one of the most popular choices serving for this purpose. Nevertheless, learning efficiency of Ising models can be impeded by the scarcity of accurate disease labels, which is a prominent problem in contemporary studies driven by electronic health records (EHR). Semi-supervised learning (SSL) leverages the large unlabeled sample with auxiliary EHR features to assist the learning with labeled data only and is a potential solution to this issue. In this paper, we develop a novel SSL method for efficient inference of Ising model. Our method first models the outcomes against the auxiliary features, then uses it to project the score function of the supervised estimator onto the EHR features, and incorporates the unlabeled sample to augment the supervised estimator for variance reduction without introducing bias. For the key step of conditional modeling, we propose strategies that can effectively leverage the auxiliary EHR information while maintaining moderate model complexity. In addition, we introduce approaches including intrinsic efficient updates and ensemble, to overcome the potential misspecification of the conditional model that may cause efficiency loss. Our method is justified by asymptotic theory and shown to outperform existing SSL methods through simulation studies. We also illustrate its utility in a real example about several key phenotypes related to frequent ICU admission on MIMIC-III data set.

Minimum Bayes risk (MBR) decoding outputs the hypothesis with the highest expected utility over the model distribution for some utility function. It has been shown to improve accuracy over beam search in conditional language generation problems and especially neural machine translation, in both human and automatic evaluations. However, the standard sampling-based algorithm for MBR is substantially more computationally expensive than beam search, requiring a large number of samples as well as a quadratic number of calls to the utility function, limiting its applicability. We describe an algorithm for MBR which gradually grows the number of samples used to estimate the utility while pruning hypotheses that are unlikely to have the highest utility according to confidence estimates obtained with bootstrap sampling. Our method requires fewer samples and drastically reduces the number of calls to the utility function compared to standard MBR while being statistically indistinguishable in terms of accuracy. We demonstrate the effectiveness of our approach in experiments on three language pairs, using chrF++ and COMET as utility/evaluation metrics.

Medical image segmentation, which is essential for many clinical applications, has achieved almost human-level performance via data-driven deep learning technologies. Nevertheless, its performance is predicated upon the costly process of manually annotating a vast amount of medical images. To this end, we propose a novel framework for robust semi-supervised medical image segmentation using diagonal hierarchical consistency learning (DiHC-Net). First, it is composed of multiple sub-models with identical multi-scale architecture but with distinct sub-layers, such as up-sampling and normalisation layers. Second, with mutual consistency, a novel consistency regularisation is enforced between one model's intermediate and final prediction and soft pseudo labels from other models in a diagonal hierarchical fashion. A series of experiments verifies the efficacy of our simple framework, outperforming all previous approaches on public Left Atrium (LA) dataset.

Automation can transform productivity in research activities that use liquid handling, such as organic synthesis, but it has made less impact in materials laboratories, which require sample preparation steps and a range of solid-state characterization techniques. For example, powder X-ray diffraction (PXRD) is a key method in materials and pharmaceutical chemistry, but its end-to-end automation is challenging because it involves solid powder handling and sample processing. Here we present a fully autonomous solid-state workflow for PXRD experiments that can match or even surpass manual data quality. The workflow involves 12 steps performed by a team of three multipurpose robots, illustrating the power of flexible, modular automation to integrate complex, multitask laboratories.

Multi-modal fusion is a fundamental task for the perception of an autonomous driving system, which has recently intrigued many researchers. However, achieving a rather good performance is not an easy task due to the noisy raw data, underutilized information, and the misalignment of multi-modal sensors. In this paper, we provide a literature review of the existing multi-modal-based methods for perception tasks in autonomous driving. Generally, we make a detailed analysis including over 50 papers leveraging perception sensors including LiDAR and camera trying to solve object detection and semantic segmentation tasks. Different from traditional fusion methodology for categorizing fusion models, we propose an innovative way that divides them into two major classes, four minor classes by a more reasonable taxonomy in the view of the fusion stage. Moreover, we dive deep into the current fusion methods, focusing on the remaining problems and open-up discussions on the potential research opportunities. In conclusion, what we expect to do in this paper is to present a new taxonomy of multi-modal fusion methods for the autonomous driving perception tasks and provoke thoughts of the fusion-based techniques in the future.

Spatio-temporal forecasting is challenging attributing to the high nonlinearity in temporal dynamics as well as complex location-characterized patterns in spatial domains, especially in fields like weather forecasting. Graph convolutions are usually used for modeling the spatial dependency in meteorology to handle the irregular distribution of sensors' spatial location. In this work, a novel graph-based convolution for imitating the meteorological flows is proposed to capture the local spatial patterns. Based on the assumption of smoothness of location-characterized patterns, we propose conditional local convolution whose shared kernel on nodes' local space is approximated by feedforward networks, with local representations of coordinate obtained by horizon maps into cylindrical-tangent space as its input. The established united standard of local coordinate system preserves the orientation on geography. We further propose the distance and orientation scaling terms to reduce the impacts of irregular spatial distribution. The convolution is embedded in a Recurrent Neural Network architecture to model the temporal dynamics, leading to the Conditional Local Convolution Recurrent Network (CLCRN). Our model is evaluated on real-world weather benchmark datasets, achieving state-of-the-art performance with obvious improvements. We conduct further analysis on local pattern visualization, model's framework choice, advantages of horizon maps and etc.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司