亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Millimeter-wave communication is widely seen as a promising option to increase the capacity of vehicular networks, where it is expected that connected cars will soon need to transmit and receive large amounts of data. Due to harsh propagation conditions, mmWave systems resort to narrow beams to serve their users, and such beams need to be configured according to traffic demand and its spatial distribution, as well as interference. In this work, we address the beam management problem, considering an urban vehicular network composed of gNBs. We first build an accurate, yet tractable, system model and formulate an optimization problem aiming at maximizing the total network data rate while accounting for the stochastic nature of the network scenario. Then we develop a graph-based model capturing the main system characteristics and use it to develop a belief propagation algorithmic framework, called CRAB, that has low complexity and, hence, can effectively cope with large-scale scenarios. We assess the performance of our approach under real-world settings and show that, in comparison to state-of-the-art alternatives, CRAB provides on average a 50% improvement in the amount of data transferred by the single gNBs and up to 30% better user coverage.

相關內容

Device density in cellular networks is expected to increase considerably in the next future. Accordingly, the access point (AP) will equip massive multiple-input multiple-output (mMIMO) antennas, using collimated millimeter-wave (mmW) and sub-THz communications, and increase the bandwidth to accommodate the growing data rate demands. In this scenario, interference plays a critical role and, if not characterized and mitigated properly, might limit the performances of the network. In this context, this paper derives the statistical properties of the aggregated interference power for a cellular network equipping a mMIMO cylindrical array. The proposed statistical model considers the link blockage and other network parameters such as antenna configuration and device density. The findings show that the characteristic function (CF) of the aggregated interference power can be regarded as a weighted mixture of two alpha-stable distributions. Furthermore, by analyzing the service probability, it is found that there is an optimal configuration of the array depending on the AP height and device density. The proposed statistical model can be part of the design of dense networks providing valuable insights for optimal network deployment

We consider the problem of allocating multiple indivisible items to a set of networked agents to maximize the social welfare subject to network externalities. Here, the social welfare is given by the sum of agents' utilities and externalities capture the effect that one user of an item has on the item's value to others. We first provide a general formulation that captures some of the existing models as a special case. We then show that the social welfare maximization problem benefits some nice diminishing or increasing marginal return properties. That allows us to devise polynomial-time approximation algorithms using the Lovasz extension and multilinear extension of the objective functions. Our principled approach recovers or improves some of the existing algorithms and provides a simple and unifying framework for maximizing social welfare subject to network externalities.

Reconfigurable intelligent surface (RIS) is considered as an extraordinarily promising technology to solve the blockage problem of millimeter wave (mmWave) communications owing to its capable of establishing a reconfigurable wireless propagation. In this paper, we focus on a RIS-assisted mmWave communication network consisting of multiple base stations (BSs) serving a set of user equipments (UEs). Considering the BS-RIS-UE association problem which determines that the RIS should assist which BS and UEs, we joint optimize BS-RIS-UE association and passive beamforming at RIS to maximize the sum-rate of the system. To solve this intractable non-convex problem, we propose a soft actor-critic (SAC) deep reinforcement learning (DRL)-based joint beamforming and BS-RIS-UE association design algorithm, which can learn the best policy by interacting with the environment using less prior information and avoid falling into the local optimal solution by incorporating with the maximization of policy information entropy. The simulation results demonstrate that the proposed SAC-DRL algorithm can achieve significant performance gains compared with benchmark schemes.

In this paper, we consider the motion energy minimization problem for a robot that uses millimeter-wave (mm-wave) communications assisted by an intelligent reflective surface (IRS). The robot must perform tasks within given deadlines and it is subject to uplink quality of service (QoS) constraints. This problem is crucial for fully automated factories that are governed by the binomial of autonomous robots and new generations of mobile communications, i.e., 5G and 6G. In this new context, robot energy efficiency and communication reliability remain fundamental problems that couple in optimizing robot trajectory and communication QoS. More precisely, to account for the mutual dependency between robot position and communication QoS, robot trajectory and beamforming at the IRS and access point all need to be optimized. We present a solution that can decouple the two problems by exploiting mm-wave channel characteristics. Then, a closed-form solution is obtained for the beamforming optimization problem, whereas the trajectory is optimized by a novel successive-convex optimization-based algorithm that can deal with abrupt line-of-sight (LOS) to non-line-of-sight (NLOS) transitions. Specifically, the algorithm uses a radio map to avoid collisions with obstacles and poorly covered areas. We prove that the algorithm can converge to a solution satisfying the Karush-Kuhn-Tucker conditions. The simulation results show a fast convergence rate of the algorithm and a dramatic reduction of the motion energy consumption with respect to methods that aim to find maximum-rate trajectories. Moreover, we show that the use of passive IRSs represents a powerful solution to improve the radio coverage and motion energy efficiency of robots.

This work explores how to design a single neural network capable of adapting to multiple heterogeneous vision tasks, such as image segmentation, 3D detection, and video recognition. This goal is challenging because both network architecture search (NAS) spaces and methods in different tasks are inconsistent. We solve this challenge from both sides. We first introduce a unified design space for multiple tasks and build a multitask NAS benchmark (NAS-Bench-MR) on many widely used datasets, including ImageNet, Cityscapes, KITTI, and HMDB51. We further propose Network Coding Propagation (NCP), which back-propagates gradients of neural predictors to directly update architecture codes along the desired gradient directions to solve various tasks. In this way, optimal architecture configurations can be found by NCP in our large search space in seconds. Unlike prior arts of NAS that typically focus on a single task, NCP has several unique benefits. (1) NCP transforms architecture optimization from data-driven to architecture-driven, enabling joint search an architecture among multitasks with different data distributions. (2) NCP learns from network codes but not original data, enabling it to update the architecture efficiently across datasets. (3) In addition to our NAS-Bench-MR, NCP performs well on other NAS benchmarks, such as NAS-Bench-201. (4) Thorough studies of NCP on inter-, cross-, and intra-tasks highlight the importance of cross-task neural architecture design, i.e., multitask neural architectures and architecture transferring between different tasks. Code is available at //github.com/dingmyu/NCP.

The highly directional beams applied in millimeter wave (mmWave) cellular networks make it possible to achieve near interference-free (NIF) transmission under judiciously designed space-time user scheduling, where the power of intra-/inter-cell interference between any two users is below a predefined threshold. In this paper, we investigate two aspects of the NIF space-time user scheduling in a multi-cell mmWave network with multi-RF-chain base stations. Firstly, given that each user has a requirement on the number of space-time resource elements, we study the NIF user scheduling problem to minimize the unfulfilled user requirements, so that the space-time resources can be utilized most efficiently and meanwhile all strong interferences are avoided. A near-optimal scheduling algorithm is proposed with performance close to the lower bound of unfulfilled requirements. Furthermore, we study the joint NIF user scheduling and power allocation problem to minimize the power consumption under the constraint of rate requirements. Based on our proposed NIF scheduling, an energy-efficient joint scheduling and power allocation scheme is designed with limited channel state information, which outperforms the existing independent set based schemes, and has near-optimal performance as well.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Many irregular domains such as social networks, financial transactions, neuron connections, and natural language structures are represented as graphs. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. However, in many of the applications, the underlying graph changes over time and existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs based on a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results that establish the connection between the proposed tensor approach and spectral convolution of tensors are developed. Numerical experiments on real datasets demonstrate the usefulness of the proposed method for an edge classification task on dynamic graphs.

We present FAST NAVIGATOR, a general framework for action decoding, which yields state-of-the-art results on the recent Room-to-Room (R2R) Vision-and-Language navigation challenge of Anderson et. al. (2018). Given a natural language instruction and photo-realistic image views of a previously unseen environment, the agent must navigate from a source to a target location as quickly as possible. While all of current approaches make local action decisions or score entire trajectories with beam search, our framework seamlessly balances local and global signals when exploring the environment. Importantly, this allows us to act greedily, but use global signals to backtrack when necessary. Our FAST framework, applied to existing models, yielded a 17% relative gain over the previous state-of-the-art, an absolute 6% gain on success rate weighted by path length (SPL).

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

北京阿比特科技有限公司